An investigation on the dynamic modeling and analysis of spatial mechanisms with spherical clearance joints including friction is presented. For this purpose, the ball and the socket, which compose a spherical joint, are modeled as two individual colliding components. The normal contact-impact forces that develop at the spherical clearance joint are determined by using a continuous force model. A continuous analysis approach is used here with a Hertzian-based contact force model, which includes a dissipative term representing the energy dissipation during the contact process. The pseudopenetration that occurs between the potential contact points of the ball and the socket surface, as well as the indentation rate play a crucial role in the evaluation of the normal contact forces. In addition, several different friction force models based on the Coulomb's law are revisited in this work. The friction models utilized here can accommodate the various friction regimens and phenomena that take place at the contact interface between the ball and the socket. Both the normal and tangential contact forces are evaluated and included into the systems' dynamics equation of motion, developed under the framework of multibody systems formulations. A spatial four-bar mechanism, which includes a spherical joint with clearance, is used as an application example to examine and quantify the effects of various friction force models, clearance sizes, and the friction coefficients.

References

References
1.
Goodman
,
T. P.
,
1962
, “
Dynamic Effects of Backlash
,”
Transaction of the 7th Mechanisms Conference
, Purdue University, Lafayette, IN, pp.
128
138
.
2.
Garrett
,
R. E.
, and
Hall
,
A. S.
,
1969
, “
Effect of Tolerance and Clearance in Linkage Design
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
198
202
.
3.
Dubowsky
,
S.
,
1974
, “
On Predicting the Dynamic Effects of Clearances in One-Dimensional Closed Loop Systems
,”
ASME J. Eng. Ind.
,
96
(
1
), pp.
324
329
.
4.
Stoenescu
,
E. D.
, and
Marghitu
,
A. B.
,
2003
, “
Dynamic Analysis of a Planar Rigid-Link Mechanism With Rotating Slider Joint and Clearance
,”
J. Sound Vib.
,
266
(
2
), pp.
394
404
.
5.
Parenti-Castelli
,
V.
, and
Venanzi
,
S.
,
2005
, “
Clearance Influence Analysis on Mechanisms
,”
Mech. Mach. Theory
,
40
(
12
), pp.
1316
1329
.
6.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Dynamic Response of Multibody Systems With Multiple Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031003
.
7.
Zhang
,
Z.
,
Xu
,
L.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2014
, “
A Kriging Model for Dynamics of Mechanical Systems With Revolute Joint Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031013
.
8.
Chen
,
Y.
,
Sun
,
Y.
, and
Chen
,
C.
,
2016
, “
Dynamic Analysis of a Planar Slider-Crank Mechanism With Clearance for a High Speed and Heavy Load Press System
,”
Mech. Mach. Theory
,
98
, pp.
81
100
.
9.
Li
,
Y.
,
Chen
,
G.
,
Sun
,
D.
,
Gao
,
Y.
, and
Wang
,
K.
,
2016
, “
Dynamic Analysis and Optimization Design of a Planar Slider–Crank Mechanism With Flexible Components and Two Clearance Joints
,”
Mech. Mach. Theory
,
99
, pp.
37
57
.
10.
Daniel
,
G. B.
,
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2016
, “
Investigation on the Influence of the Cavitation Boundaries on the Dynamic Behavior of Planar Mechanical Systems With Hydrodynamic Bearings
,”
Mech. Mach. Theory
,
99
, pp.
19
36
.
11.
Wilson
,
R.
, and
Fawcett
,
J. N.
,
1974
, “
Dynamics of the Slider-Crank Mechanism With Clearance in the Sliding Bearing
,”
Mech. Mach. Theory
,
9
(
1
), pp.
61
80
.
12.
Farahanchi
,
F.
, and
Shaw
,
S.
,
1994
, “
Chaotic and Periodic Dynamics of a Slider-Crank Mechanism With Slider Clearance
,”
J. Sound Vib.
,
177
(
3
), pp.
307
324
.
13.
Thümmel
,
T.
, and
Funk
,
K.
,
1999
, “
Multibody Modeling of Linkage Mechanisms Including Friction, Clearance and Impact
,”
Tenth World Congress on the Theory of Machines and Mechanisms
, Oulu, Finland, June 20–24, Vol.
4
, pp.
1375
1386
.
14.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2008
, “
Translational Joints With Clearance in Rigid Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
0110071
.
15.
Flores
,
P.
,
Leine
,
R.
, and
Glocker
,
C.
,
2010
, “
Modeling and Analysis of Planar Rigid Multibody Systems With Translational Clearance Joints Based on the Non-Smooth Dynamics Approach
,”
Multibody Syst. Dyn.
,
23
(
2
), pp.
165
190
.
16.
Zhang
,
J.
, and
Wang
,
Q.
,
2016
, “
Modeling and Simulation of a Frictional Translational Joint With a Flexible Slider and Clearance
,”
Multibody Syst. Dyn.
,
38
(
4
), pp.
367
389
.
17.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2006
, “
Spatial Revolute Joints With Clearance for Dynamic Analysis of Multibody Systems
,”
Proc. Inst. Mech. Eng., Part K
,
220
(
4
), pp.
257
271
.
18.
Tian
,
Q.
,
Sun
,
Y.
,
Liu
,
C.
,
Hu
,
H.
, and
Flores
,
P.
,
2013
, “
Elastohydrodynamic Lubricated Cylindrical Joints for Rigid-Flexible Multibody Dynamics
,”
Comput. Struct.
,
114–115
, pp.
106
120
.
19.
Tian
,
Q.
,
Xiao
,
Q.
,
Sun
,
Y.
,
Hu
,
H.
, and
Flores
,
P.
,
2015
, “
Coupling Dynamics of a Geared Multibody System Supported by Elastohydrodynamic Lubricated Cylindrical Joints
,”
Multibody Syst. Dyn.
,
33
(
3
), pp.
259
284
.
20.
Haines
,
R. S.
,
1985
, “
An Experimental Investigation Into the Dynamic Behaviour of Revolute Joints With Varying Degrees of Clearance
,”
Mech. Mach. Theory
,
20
(
3
), pp.
221
231
.
21.
Stein
,
J. L.
, and
Wang
,
C.-H.
,
1996
, “
Automatic Detection of Clearance in Mechanical Systems: Experimental Validation
,”
Mech. Syst. Signal Process.
,
10
(
4
), pp.
395
409
.
22.
Erkaya
,
S.
, and
Uzmay
,
I.
,
2010
, “
Experimental Investigation of Joint Clearance Effects on the Dynamics of a Slider-Crank Mechanism
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
81
102
.
23.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1
), pp.
325
338
.
24.
Erkaya
,
S.
,
Doğan
,
S.
, and
Ulus
,
S.
,
2015
, “
Effects of Joint Clearance on the Dynamics of a Partly Compliant Mechanism: Numerical and Experimental Studies
,”
Mech. Mach. Theory
,
88
, pp.
125
140
.
25.
Crowthera
,
A. R.
,
Singha
,
R.
,
Zhangb
,
N.
, and
Chapman
,
C.
,
2007
, “
Impulsive Response of an Automatic Transmission System With Multiple Clearances: Formulation, Simulation and Experiment
,”
J. Sound Vib.
,
306
(
3–5
), pp.
444
466
.
26.
Ambrósio
,
J.
, and
Verissimo
,
P.
,
2009
, “
Improved Bushing Models for General Multibody Systems and Vehicle Dynamics
,”
Multibody Syst. Dyn.
,
22
(
4
), pp.
341
365
.
27.
Wang
,
G.
,
Liu
,
H.
,
Deng
,
P.
,
Yin
,
K.
, and
Zhang
,
G.
,
2017
, “
Dynamics Analysis of 4-SPS/CU Parallel Mechanism Considering Three-Dimensional Wear of Spherical Joint With Clearance
,”
ASME J. Tribol.
,
139
(
2
), p.
021608
.
28.
Jing
,
Z.
,
Hong-Wei
,
G.
,
Rong-Qiang
,
L.
, and
Zong-Quan
,
D.
,
2015
, “
Nonlinear Characteristic of Spherical Joints With Clearance
,”
J. Aerosp. Technol. Manage.
,
7
(
2
), pp.
179
184
.
29.
Quental
,
C.
,
Folgado
,
J.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2013
, “
Multibody System of the Upper Limb Including a Reverse Shoulder Prosthesis
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111005
.
30.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modelling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.
31.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
Dynamic Modeling and Analysis of Wear in Spatial Hard-On-Hard Couple Hip Replacements Using Multibody Systems Methodologies
,”
Nonlinear Dyn.
,
82
(
1
), pp.
1039
1058
.
32.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
,
2002
, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
41
63
.
33.
Orden
,
J. C. G.
,
2005
, “
Analysis of Joint Clearances in Multibody Systems
,”
Multibody Syst. Dyn.
,
13
(
4
), pp.
401
420
.
34.
Liu
,
C.-S.
,
Zhang
,
K.
, and
Yang
,
L.
,
2006
, “
Normal Force-Displacement Relationship of Spherical Joints With Clearances
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
160
167
.
35.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
240
247
.
36.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
37.
Wang
,
G.
,
Liu
,
H.
, and
Deng
,
P.
,
2015
, “
Dynamics Analysis of Spatial Multibody System With Spherical Joint Wear
,”
ASME J. Tribol.
,
137
(
2
), p.
021605
.
38.
Wang
,
G.
, and
Liu
,
H.
,
2015
, “
Dynamics Analysis of 4-SPS/CU Parallel Mechanism With Spherical Joint Clearance
,”
J. Mech. Eng.
,
51
(
1
), pp.
43
51
.
39.
Zheng
,
E.
,
Zhu
,
R.
,
Zhu
,
S.
, and
Lu
,
X.
,
2016
, “
A Study on Dynamics of Flexible Multi-Link Mechanism Including Joints With Clearance and Lubrication for Ultra-Precision Presses
,”
Nonlinear Dyn.
,
83
(
1
), pp.
137
159
.
40.
Nikravesh
,
P. E.
,
1988
,
Computer Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
41.
Hertz
,
H.
,
1896
,
On the Contact of Solids—On the Contact of Rigid Elastic Solids and on Hardness
(Translated by D. E. Jones and G. A. Schott),
Macmillan
,
London
, pp.
146
183
.
42.
Goldsmith
,
W.
,
1960
,
Impact—The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold Ltd.
,
London
.
43.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
44.
Alves
,
J.
,
Peixinho
,
N.
,
Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
45.
Olsson
,
H.
,
Åström
,
K. J.
,
de Wit
,
C. C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.
46.
Berger
,
E. J.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.
47.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
48.
Coulomb
,
C. A.
,
1785
, “
Théorie des Machines Simples, en Ayant Égard au Frottement de Leurs Parties, et à la Roideur des Cordages
,” Mémoire de Mathématique et de Physique, Paris, France.
49.
Threlfall
,
D. C.
,
1978
, “
The Inclusion of Coulomb Friction in Mechanisms Programs With Particular Reference to DRAM Au Programme DRAM
,”
Mech. Mach. Theory
,
13
(
4
), pp.
475
483
.
50.
Rooney
,
G. T.
, and
Deravi
,
P.
,
1982
, “
Coulomb Friction in Mechanism Sliding Joints
,”
Mech. Mach. Theory
,
17
(
3
), pp.
207
211
.
51.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Model
,”
Virtual Nonlinear Multibody Systems
, Vol. 103, Springer, Dordrecht, The Netherlands, pp.
57
81
.
52.
Stribeck
,
R.
,
1902
, “
Die Wesentlichen Eigenschaften der Gleitund Rollenlager
,”
Z. Ver. Dtsch. Ing.
,
46
(
38
), pp.
1342
1348
; 1432–1438.
53.
Stribeck
,
R.
,
1902
, “
Die Wesentlichen Eigenschaften der Gleitund Rollenlager
,”
Z. Ver. Dtsch. Ing.
,
46
(
39
), pp.
1463
1470
.
54.
Bo
,
L. C.
, and
Pavelescu
,
D.
,
1982
, “
The Friction-Speed Relation and Its Influence on the Critical Velocity of Stick-Slip Motion
,”
Wear
,
82
(
3
), pp.
277
289
.
55.
Bengisu
,
M. T.
, and
Akay
,
A.
,
1994
, “
Stability of Friction-Induced Vibrations in Multi-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
171
(
4
), pp.
557
570
.
56.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
57.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Silva
,
M. T.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011019
.
You do not currently have access to this content.