When the traditional vibrational resonance (VR) occurs in a nonlinear system, a weak character signal is enhanced by an appropriate high-frequency auxiliary signal. Here, for the harmonic character signal case, the frequency of the character signal is usually smaller than 1 rad/s. The frequency of the auxiliary signal is dozens of times of the frequency of the character signal. Moreover, in the real world, the characteristic information is usually indicated by a weak signal with a frequency in the range from several to thousands rad/s. For this case, the weak high-frequency signal cannot be enhanced by the traditional mechanism of VR, and as such, the application of VR in the engineering field could be restricted. In this work, by introducing a scale transformation, we transform high-frequency excitations in the original system to low-frequency excitations in a rescaled system. Then, we make VR to occur at the low frequency in the rescaled system, as usual. Meanwhile, the VR also occurs at the frequency of the character signal in the original system. As a result, the weak character signal with arbitrary high-frequency can be enhanced. To make the rescaled system in a general form, the VR is investigated in fractional-order Duffing oscillators. The form of the potential function, the fractional order, and the reduction scale are important factors for the strength of VR.

References

References
1.
Gammaitoni
,
L.
,
Hänggi
,
P.
,
Jung
,
P.
, and
Marchesoni
,
F.
,
1998
, “
Stochastic Resonance
,”
Rev. Mod. Phys.
,
70
(
1
), pp.
223
287
.
2.
Liu
,
X.
,
Yang
,
J.
,
Liu
,
H.
,
Cheng
,
G.
,
Chen
,
X.
, and
Xu
,
D.
,
2015
, “
Optimizing the Adaptive Stochastic Resonance and Its Application in Fault Diagnosis
,”
Fluctuation Noise Lett.
,
14
(
4
), p.
1550038
.
3.
Tan
,
J.
,
Chen
,
X.
,
Wang
,
J.
,
Chen
,
H.
,
Cao
,
H.
,
Zi
,
Y.
, and
He
,
Z.
,
2009
, “
Study of Frequency-Shifted and Re-Scaling Stochastic Resonance and Its Application to Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
811
822
.
4.
Landa
,
P. S.
, and
McClintock
,
P. V. E.
,
2000
, “
Vibrational Resonance
,”
J. Phys. A: Math. Gen.
,
33
(
45
), pp.
L433
L438
.
5.
Baltanás
,
J. P.
,
Lopez
,
L.
,
Blechman
,
I. I.
,
Landa
,
P. S.
,
Zaikin
,
A.
,
Kurths
,
J.
, and
Sanjuán
,
M. A. F.
,
2003
, “
Experimental Evidence, Numerics, and Theory of Vibrational Resonance in Bistable Systems
,”
Phys. Rev. E
,
67
(
6
), p.
066119
.
6.
Chizhevsky
,
V. N.
, and
Giacomelli
,
G.
,
2008
, “
Vibrational Resonance and the Detection of Aperiodic Binary Signals
,”
Phys. Rev. E
,
77
(
5
), p.
051126
.
7.
Mbong
,
T. D.
,
Siewe
,
M. S.
, and
Tchawoua
,
C.
,
2015
, “
The Effect of Nonlinear Damping on Vibrational Resonance and Chaotic Behavior of a Beam Fixed at Its Two Ends and Prestressed
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
228
243
.
8.
Shi
,
J.
,
Huang
,
C.
,
Dong
,
T.
, and
Zhang
,
X.
,
2010
, “
High-Frequency and Low-Frequency Effects on Vibrational Resonance in a Synthetic Gene Network
,”
Phys. Biol.
,
7
(
3
), p.
036006
.
9.
Qin
,
Y. M.
,
Wang
,
J.
,
Men
,
C.
,
Deng
,
B.
, and
Wei
,
X. L.
,
2011
, “
Vibrational Resonance in Feedforward Network
,”
Chaos
,
21
(
2
), p.
023133
.
10.
Yu
,
H.
,
Wang
,
J.
,
Sun
,
J.
, and
Yu
,
H.
,
2012
, “
Effects of Hybrid Synapses on the Vibrational Resonance in Small-World Neuronal Networks
,”
Chaos
,
22
(
3
), p.
033105
.
11.
Rajasekar
,
S.
,
Used
,
J.
,
Wagemakers
,
A.
, and
Sanjuán
,
M. A. F.
,
2012
, “
Vibrational Resonance in Biological Nonlinear Maps
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
8
), pp.
3435
3445
.
12.
Hu
,
D.
,
Yang
,
J.
, and
Liu
,
X.
,
2012
, “
Delay-Induced Vibrational Multiresonance in FitzHugh–Nagumo System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
1031
1035
.
13.
Yang
,
L.
,
Liu
,
W.
,
Yi
,
M.
,
Wang
,
C.
,
Zhu
,
Q.
,
Zhan
,
X.
, and
Jia
,
Y.
,
2012
, “
Vibrational Resonance Induced by Transition of Phase-Locking Modes in Excitable Systems
,”
Phys. Rev. E
,
86
(
1
), p.
016209
.
14.
Zhu
,
J.
,
Kong
,
C.
, and
Liu
,
X.
,
2016
, “
Subthreshold and Suprathreshold Vibrational Resonance in the FitzHugh–Nagumo Neuron Model
,”
Phys. Rev. E
,
94
(
3
), p.
032208
.
15.
Abirami
,
K.
,
Rajasekar
,
S.
, and
Sanjuán
,
M. A. F.
,
2013
, “
Vibrational Resonance in the Morse Oscillator
,”
Pramana
,
81
(
1
), pp.
127
141
.
16.
Yang
,
J. H.
, and
Zhu
,
H.
,
2012
, “
Vibrational Resonance in Duffing Systems With Fractional-Order Damping
,”
Chaos
,
22
(
1
), p.
013112
.
17.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
, and
Liu
,
H. G.
,
2015
, “
Bifurcation and Resonance in a Fractional Mathieu-Duffing Oscillator
,”
Eur. Phys. J. B
,
88
(
11
), p.
310
.
18.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
,
Liu
,
H. G.
, and
Cheng
,
G.
,
2015
, “
Bifurcation Transition and Nonlinear Response in a Fractional-Order System
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061017
.
19.
Chen
,
L.
,
Li
,
H.
,
Li
,
Z.
, and
Zhu
,
W.
,
2013
, “
Asymptotic Stability With Probability One of MDOF Nonlinear Oscillators With Fractional Derivative Damping
,”
Sci. China: Phys. Mech. Astron.
,
56
(
11
), pp.
2200
2207
.
20.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
, pp.
10
12
.
21.
Blekhman
,
I. I.
, and
Landa
,
P. S.
,
2004
, “
Conjugate Resonances and Bifurcations in Nonlinear Systems Under Biharmonical Excitation
,”
Int. J. Nonlinear Mech.
,
39
(
3
), pp.
421
426
.
22.
Thomsen
,
J. J.
,
2003
,
Vibrations and Stability
,
Springer-Verlag
,
Berlin
, pp.
287
334
.
23.
Blekhman
,
I. I.
,
2000
,
Vibrational Mechanics
,
World Scientific
,
Singapore
.
24.
Rajasekar
,
S.
,
Jeyakumari
,
S.
,
Chinnathambi
,
V.
, and
Sanjuán
,
M. A. F.
,
2010
, “
Role of Depth and Location of Minima of a Double-Well Potential on Vibrational Resonance
,”
J. Phys. A: Math. Theor.
,
43
(
46
), p.
465101
.
25.
Rajasekar
,
S.
,
Abirami
,
K.
, and
Sanjuán
,
M. A. F.
,
2011
, “
Novel Vibrational Resonance in Multistable Systems
,”
Chaos
,
21
(
3
), p.
033106
.
26.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Gao
,
G.
,
2012
, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
3092
3100
.
27.
Shen
,
Y.
,
Yang
,
S.
,
Xing
,
H.
, and
Ma
,
H.
,
2012
, “
Primary Resonance of Duffing Oscillator With Two Kinds of Fractional-Order Derivatives
,”
Int. J. Nonlinear Mech.
,
47
(
9
), pp.
975
983
.
28.
Van Khang
,
N.
, and
Chien
,
T. Q.
,
2016
, “
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051018
.
29.
Yang
,
J. H.
,
Sanjuán
,
M. A. F.
,
Liu
,
H. G.
,
Litak
,
G.
, and
Li
,
X.
,
2016
, “
Stochastic P-Bifurcation and Stochastic Resonance in a Noisy Bistable Fractional-Order System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
41
, pp.
104
117
.
30.
Balachandran
,
B.
, and
Magrab
,
E. B.
,
2008
,
Vibrations
,
Cengage Learning
,
Toronto, ON, Canada
, pp.
183
203
.
31.
Magin
,
R.
,
Ortigueira
,
M. D.
,
Podlubny
,
I.
, and
Trujillo
,
J.
,
2011
, “
On the Fractional Signals and Systems
,”
Signal Process.
,
91
(
3
), pp.
350
371
.
32.
He
,
Q.
,
Wang
,
J.
,
Liu
,
Y.
,
Dai
,
D.
, and
Kong
,
F.
,
2012
, “
Multiscale Noise Tuning of Stochastic Resonance for Enhanced Fault Diagnosis in Rotating Machines
,”
Mech. Syst. Signal Process.
,
28
, pp.
443
457
.
33.
Li
,
J.
,
Chen
,
X.
,
Du
,
Z.
,
Fang
,
Z.
, and
He
,
Z.
,
2013
, “
A New Noise-Controlled Second-Order Enhanced Stochastic Resonance Method With Its Application in Wind Turbine Drivetrain Fault Diagnosis
,”
Renewable Energy
,
60
, pp.
7
19
.
34.
Wang
,
J.
,
He
,
Q.
, and
Kong
,
F.
,
2015
, “
Adaptive Multiscale Noise Tuning Stochastic Resonance for Health Diagnosis of Rolling Element Bearings
,”
IEEE Trans. Instrum. Meas.
,
64
(
2
), pp.
564
577
.
35.
Lang
,
R.
,
Li
,
X.
,
Gao
,
F.
, and
Yang
,
L.
,
2016
, “
Re-Scaling and Adaptive Stochastic Resonance as a Tool for Weak GNSS Signal Acquisition
,”
J. Syst. Eng. Electron.
,
27
(
2
), pp.
290
296
.
36.
Yang
,
Y.
,
Xu
,
W.
,
Gu
,
X.
, and
Sun
,
Y.
,
2015
, “
Stochastic Response of a Class of Self-Excited Systems With Caputo-Type Fractional Derivative Driven by Gaussian White Noise
,”
Chaos Solitons Fract.
,
77
, pp.
190
204
.
37.
Qin
,
Y.
,
Tao
,
Y.
,
He
,
Y.
, and
Tang
,
B.
,
2014
, “
Adaptive Bistable Stochastic Resonance and Its Application in Mechanical Fault Feature Extraction
,”
J. Sound Vib.
,
333
(
26
), pp.
7386
7400
.
38.
Lu
,
S.
,
He
,
Q.
, and
Kong
,
F.
,
2015
, “
Effects of Underdamped Step-Varying Second-Order Stochastic Resonance for Weak Signal Detection
,”
Digital Signal Process.
,
36
, pp.
93
103
.
You do not currently have access to this content.