In a wide range of real-world physical and dynamical systems, precise defining of the uncertain parameters in their mathematical models is a crucial issue. It is well known that the usage of fuzzy differential equations (FDEs) is a way to exhibit these possibilistic uncertainties. In this research, a fast and accurate type of Runge–Kutta (RK) methods is generalized that are for solving first-order fuzzy dynamical systems. An interesting feature of the structure of this technique is that the data from previous steps are exploited that reduce substantially the computational costs. The major novelty of this research is that we provide the conditions of the stability and convergence of the method in the fuzzy area, which significantly completes the previous findings in the literature. The experimental results demonstrate the robustness of our technique by solving linear and nonlinear uncertain dynamical systems.

References

References
1.
Rashkovsky
,
I.
, and
Margaliot
,
M.
,
2007
, “
Nicholson's Blowflies Revisited: A Fuzzy Modeling Approach
,”
Fuzzy Sets Syst.
,
158
(
10
), pp.
1083
1096
.
2.
Hong
,
L.
, and
Sun
,
J.
,
2006
, “
Bifurcations of Fuzzy Nonlinear Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
1
), pp.
1
12
.
3.
Chen
,
B.
, and
Liu
,
X.
,
2004
, “
Reliable Control Design of Fuzzy Dynamic Systems With Time-Varying Delay
,”
Fuzzy Sets Syst.
,
146
(
3
), pp.
349
374
.
4.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
,
2014
, “
Motion Planning of Uncertain Ordinary Differential Equation Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031021
.
5.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
,
2012
, “
Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081003
.
6.
Kaleva
,
O.
,
1987
, “
Fuzzy Differential Equations
,”
Fuzzy Sets Syst.
,
24
(
3
), pp.
301
317
.
7.
Seikkala
,
S.
,
1987
, “
On the Fuzzy Initial Value Problem
,”
Fuzzy Sets Syst.
,
24
(
3
), pp.
319
330
.
8.
Ma
,
M.
,
Friedman
,
M.
, and
Kandel
,
A.
,
1999
, “
Numerical Solution of Fuzzy Differential Equations
,”
Fuzzy Sets Syst.
,
105
(
1
), pp.
133
138
.
9.
Nieto
,
J. J.
, and
Rodríguez-López
,
R.
,
2007
, “
Euler Polygonal Method for Metric Dynamical Systems
,”
Inf. Sci.
,
177
(20), pp.
4256
4270
.
10.
Gnana Bhaskar
,
T.
,
Lakshmikantham
,
V.
, and
Devi
,
V.
,
2004
, “
Revisiting Fuzzy Differential Equations
,”
Nonlinear Anal.: Hybrid Syst.
,
58
(3–4), pp.
351
358
.
11.
Bede
,
B.
, and
Gal
,
S. G.
,
2005
, “
Generalizations of the Differentiability of Fuzzy Number Value Functions With Applications to Fuzzy Differential Equations
,”
Fuzzy Sets Syst.
,
151
(
3
), pp.
581
599
.
12.
Ahmadian
,
A.
,
Suleiman
,
M.
,
Salahshour
,
S.
, and
Baleanu
,
D.
,
2013
, “
A Jacobi Operational Matrix for Solving Fuzzy Linear Fractional Differential Equation
,”
Adv. Differ. Equations
,
2013
(
1
), p.
104
.
13.
Ahmadian
,
A.
,
Chan
,
C. S.
,
Salahshour
,
S.
, and
Vaitheeswaran
,
V.
,
2014
, “
FTFBE: A Numerical Approximation for Fuzzy Time-Fractional Bloch Equation
,”
IEEE International Conference on Fuzzy Systems
(
FUZZ-IEEE
), Beijing, China, July 6–11, pp.
418
423
.
14.
Ahmadian
,
A.
,
Salahshour
,
S.
,
Chan
,
C. S.
, and
Baleanu
,
D.
,
2016
, “
Numerical Solutions of Fuzzy Differential Equations by an Efficient Runge–Kutta Method With Generalized Differentiability
,”
Fuzzy Sets Syst.
, epub.
15.
Ahmadian
,
A.
,
Salahshour
,
S.
, and
Chan
,
C. S.
,
2017
, “
Fractional Differential Systems: A Fuzzy Solution Based on Operational Matrix of Shifted Chebyshev Polynomials and Its Applications
,”
IEEE Trans. Fuzzy Syst.
,
25
(
1
), pp.
218
236
.
16.
Allahviranloo
,
T.
, and
Salahshour
,
S.
,
2011
, “
Euler Method for Solving Hybrid Fuzzy Differential Equation
,”
J. Soft Comput.
,
15
(
7
), pp.
1247
1253
.
17.
Allahviranloo
,
T.
,
Salahshour
,
S.
, and
Khezerloo
,
M.
,
2011
, “
Maximal and Minimal Symmetric Solutions of Fully Fuzzy Linear Systems
,”
J. Comput. Appl. Math.
,
235
(
16
), pp.
4652
4662
.
18.
Salahshour
,
S.
, and
Allahviranloo
,
T.
,
2013
, “
Applications of Fuzzy Laplace Transforms
,”
J. Soft Comput.
,
17
(
1
), pp.
145
158
.
19.
Salahshour
,
S.
,
Allahviranloo
,
T.
,
Abbasbandy
,
S.
, and
Baleanu
,
D.
,
2012
, “
Existence and Uniqueness Results for Fractional Differential Equations With Uncertainty
,”
Adv. Differ. Equations
,
2012
, pp.
1
12
.
20.
Chen
,
M.
,
Li
,
D.
, and
Xue
,
X.
,
2011
, “
Periodic Problems of First Order Uncertain Dynamical Systems
,”
Fuzzy Sets Syst.
,
162
(
1
), pp.
67
78
.
21.
Chen
,
M.
, and
Han
,
C.
,
2013
, “
Periodic Behavior of Semi-Linear Uncertain Dynamical Systems
,”
Fuzzy Sets Syst.
,
230
, pp.
82
91
.
22.
Cecconello
,
M. S.
,
Bassanezi
,
R. C.
,
Brandão
,
A. J. V.
, and
Leite
,
J.
,
2014
, “
On the Stability of Fuzzy Dynamical Systems
,”
Fuzzy Sets Syst.
,
248
, pp.
106
121
.
23.
Stefanini
,
L.
,
Sorini
,
L.
, and
Guerra
,
M. L.
,
2006
, “
Simulation of Fuzzy Dynamical Systems Using the LU-Representation of Fuzzy Numbers
,”
Chaos, Solitons Fractals
,
29
(
3
), pp.
638
652
.
24.
Abbasbandy
,
S.
, and
Allahviranloo
,
T.
,
2004
, “
Numerical Solution of Fuzzy Differential Equation by Runge–Kutta Method
,”
Nonlinear Stud.
,
11
(1), pp.
117
129
.
25.
Palligkinis
,
S. C.
,
Papageorgiou
,
G.
, and
Famelis
,
I. T.
,
2009
, “
Runge–Kutta Methods for Fuzzy Differential Equations
,”
Appl. Math. Comput.
,
209
(1), pp.
97
105
.
26.
Ghazanfari
,
B.
, and
Shakerami
,
A.
,
2011
, “
Numerical Solutions of Fuzzy Differential Equations by Extended Runge–Kutta-Like Formulae of Order 4
,”
Fuzzy Sets Syst.
,
189
(1), pp.
74
91
.
27.
Karimi Dizicheh
,
A.
,
Salahshour
,
S.
, and
Ismail
,
F. B.
,
2013
, “
A Note on Numerical Solutions of Fuzzy Differential Equations by Extended Runge–Kutta-Like Formulae of Order 4
,”
Fuzzy Sets Syst.
,
233
, pp.
96
100
.
28.
Bede
,
B.
,
2008
, “
Note on Numerical Solutions of Fuzzy Differential Equations by Predictor Corrector Method
,”
Inf. Sci.
,
178
(
7
), pp.
1917
1922
.
29.
Pederson
,
S.
, and
Sambandham
,
M.
,
2008
, “
The Runge–Kutta Method for Hybrid Fuzzy Differential Equations
,”
Nonlinear Anal.: Hybrid Syst.
,
2
(
2
), pp.
626
634
.
30.
Ahmadian
,
A.
,
Salahshour
,
S.
, and
Chan
,
C. S.
,
2015
, “
A Runge–Kutta Method With Reduced Number of Function Evaluations to Solve Hybrid Fuzzy Differential Equations
,”
J. Soft Comput.
,
19
(
4
), pp.
1051
1062
.
31.
Bede
,
B.
, and
Gal
,
S. G.
,
2010
, “
Solutions of Fuzzy Differential Equations Based on Generalized Differentiability
,”
Commun. Math. Anal.
,
9
(2), pp.
22
41
.
32.
Zhang
,
S.
, and
Li
,
J.
,
2011
, “
Explicit Numerical Methods for Solving Stiff Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041008
.
33.
Renaut
,
R.
,
1990
, “
Two-Step Runge–Kutta Methods and Hyperbolic Partial Differential Equations
,”
Math. Comput.
,
55
(
192
), pp.
563
579
.
34.
Jackiewicz
,
Z.
,
Renaut
,
R.
, and
Feldstein
,
A.
,
1991
, “
Two-Step Runge–Kutta Methods
,”
SIAM J. Numer. Anal.
,
28
(
4
), pp.
1165
1182
.
35.
Jackiewicz
,
Z.
,
Renaut
,
R. A.
, and
Zennaro
,
M.
,
1995
, “
Explicit Two-Step Runge–Kutta Methods
,”
Appl. Math.
,
40
(6), pp.
433
456
.
36.
Jackiewicz
,
Z.
, and
Tracogna
,
S.
,
1995
, “
A General Class of Two-Step Runge–Kutta Methods for Ordinary Differential Equations
,”
SIAM J. Numer. Anal.
,
32
(
5
), pp.
1390
1427
.
37.
Tracogna
,
S.
,
1996
, “
Implementation of Two-Step Runge–Kutta Methods for Ordinary Differential Equations
,”
J. Comput. Appl. Math.
,
76
(1–2), pp.
113
136
.
38.
Albrecht
,
P.
,
1985
, “
Numerical Treatment of O.D.Es: The Theory of A-Methods
,”
Numer. Math.
,
47
(1), pp.
59
87
.
39.
Phohomsiri
,
P.
, and
Udwadia
,
F. E.
,
2004
, “
Acceleration of Runge–Kutta Integration Schemes
,”
Discrete Dyn. Nat. Soc.
,
2004
(
2
), pp.
307
314
.
40.
Udwadia
,
F. E.
, and
Farahani
,
A.
,
2008
, “
Accelerated Runge–Kutta Methods
,”
Discrete Dyn. Nat. Soc.
,
2008
, p.
790619
.
41.
Goetschel
,
R.
, and
Voxman
,
W.
,
1986
, “
Elementary Calculus
,”
Fuzzy Sets Syst.
,
18
(
1
), pp.
31
43
.
42.
Chalco-Cano
,
Y.
, and
Román-Flores
,
H.
,
2008
, “
On New Solutions of Fuzzy Differential Equations
,”
Chaos, Solitons Fractals
,
38
(
1
), pp.
112
119
.
43.
Goeken
,
D.
, and
Johnson
,
O.
,
2000
, “
Runge–Kutta With Higher Order Derivative Approximations
,”
Appl. Numer. Math.
,
34
(2–3), pp.
207
218
.
44.
Wu
,
X.
, and
Xia
,
J.
,
2006
, “
Extended Runge–Kutta-Like Formulae
,”
Appl. Numer. Math.
,
56
(
12
), pp.
1584
1605
.
You do not currently have access to this content.