Static optimization (SO) has been used extensively to solve the muscle redundancy problem in inverse dynamics (ID). The major advantage of this approach over other techniques is the computational efficiency. This study discusses the possibility of applying SO in forward dynamics (FD) musculoskeletal simulations. The proposed approach, which is entitled forward static optimization (FSO), solves the muscle redundancy problem at each FSO time step while tracking desired kinematic trajectories. Two examples are showcased as proof of concept, for which results of both dynamic optimization (DO) and FSO are presented for comparison. The computational costs are also detailed for comparison. In terms of simulation time and quality of muscle activation prediction, FSO is found to be a suitable method for solving forward dynamic musculoskeletal simulations.

References

References
1.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
De Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the Anybody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
2.
Quental
,
C.
,
Folgado
,
J.
, and
Ambrósio
,
J.
,
2016
, “
A Window Moving Inverse Dynamics Optimization for Biomechanics of Motion
,”
Multibody Syst. Dyn.
,
38
(
2
), pp.
157
171
.
3.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
4.
Rasmussen
,
J.
,
Damsgaard
,
M.
, and
Voigt
,
M.
,
2001
, “
Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study
,”
J. Biomech.
,
34
(
3
), pp.
409
415
.
5.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
(
11
), pp.
793
801
.
6.
Kuo
,
A. D.
,
2002
, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
113
120
.
7.
Shourijeh
,
M. S.
,
2013
, “
Optimal Control and Multibody Dynamic Modelling of Human Musculoskeletal Systems
,”
Ph.D. thesis
, University of Waterloo, Waterloo, ON, Canada.
8.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
9.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Optimal Control and Forward Dynamics of Human Periodic Motions Using Fourier Series for Muscle Excitation Patterns
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021005
.
10.
Pedotti
,
A.
,
Krishnan
,
V.
, and
Stark
,
L.
,
1978
, “
Optimization of Muscle-Force Sequencing in Human Locomotion
,”
Math. Biosci.
,
38
(1–2), pp.
57
76
.
11.
Rohrle
,
H.
,
Scholten
,
R.
,
Sigolotto
,
C.
,
Sollbach
,
W.
, and
Kellner
,
H.
,
1984
, “
Joint Forces in the Human Pelvis-Leg Skeleton During Walking
,”
J. Biomech.
,
17
(
6
), pp.
409
424
.
12.
Herzog
,
W.
,
1987
, “
Individual Muscle Force Estimations Using Non-Linear Optimal Design
,”
J. Neurosci. Methods
,
21
(2–4), pp.
167
179
.
13.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics: A New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
,
27
(
7
), pp.
953
960
.
14.
Ackermann
,
M.
,
2007
, “
Dynamics and Energetics of Walking With Prostheses
,”
Ph.D. thesis
, University of Stuttgart, Stuttgart, Germany.
15.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
2005
, “
A Dynamic Model of the Knee and Lower Limb for Simulating Rising Movements
,”
Comput. Methods Biomech. Biomed. Eng.
,
5
(
2
), pp.
149
159
.
16.
Peasgood
,
M.
,
Kubica
,
E.
, and
McPhee
,
J.
,
2006
, “
Stabilization and Energy Optimization of a Dynamic Walking Gait Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
65
72
.
17.
Rasmussen
,
J.
,
Damsgaard
,
M.
,
Christensen
,
S. T.
, and
Surma
,
E.
,
2002
, “
Design Optimization With Respect to Ergonomic Properties
,”
Struct. Multidiscip. Optim.
,
24
(
2
), pp.
89
97
.
18.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
19.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2014
, “
Forward Dynamic Optimization of Human Gait Simulations: A Global Parameterization Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031018
.
20.
Shourijeh
,
M. S.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2017
, “
Estimation of Maximum Muscle Contraction Frequency in a Finger Tapping Motion Using Forward Musculoskeletal Dynamic Simulations
,”
ASME J. Comput. Nonlinear Dyn.
(in press).
21.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.
22.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Softw.
,
41
(
1
), pp.
1:1
1:37
.
23.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
24.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
25.
Shourijeh
,
M. S.
,
Smale
,
K. B.
,
Potvin
,
B. M.
, and
Benoit
,
D. L.
,
2016
, “
A Forward-Muscular Inverse-Skeletal Dynamics Framework for Human Musculoskeletal Simulations
,”
J. Biomech.
,
49
(
9
), pp.
1718
1723
.
26.
The MathWorks
,
2014
, “
MATLAB, Version 8.4 (R2014b)
,” The MathWorks Inc., Natick, MA.
27.
Lewis
,
F. L.
,
Abdallah
,
C. T.
, and
Dawson
,
D. M.
,
1993
,
Control of Robot Manipulators
, Vol.
866
,
Macmillan
,
New York
.
28.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.
29.
Murray
,
W. M.
,
Delp
,
S. L.
, and
Buchanan
,
T. S.
,
1995
, “
Variation of Muscle Moment Arms With Elbow and Forearm Position
,”
J. Biomech.
,
28
(
5
), pp.
513
525
.
30.
Ghannadi
,
B.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2015
, “
Development of a Human-Robot Dynamic Model for the Model-Based Controller Design of an Upper Limb Rehabilitation Robot
,”
ECCOMAS
Thematic Conference on Multibody Dynamics, Barcelona, Spain, June 29–July 2.
31.
Grune
,
L.
, and
Jurgen
,
P.
,
2011
,
Nonlinear Model Predictive Control: Theory and Algorithms
,
Springer-Verlag
,
London
.
32.
Mehrabi
,
N.
,
Sharif Razavian
,
R.
,
Ghannadi
,
B.
, and
McPhee
,
J.
,
2016
, “
Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control
,”
Front. Comput. Neurosci.
,
10
, p.
143
.
33.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
1999
, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comput. Methods Biomech. Biomed. Eng.
,
2
(
3
), pp.
201
231
.
34.
Brookham
,
R. L.
,
Middlebrook
,
E. E.
,
Grewal
,
T.
, and
Dickerson
,
C. R.
,
2011
, “
The Utility of an Empirically Derived Co-Activation Ratio for Muscle Force Prediction Through Optimization
,”
J. Biomech.
,
44
(
8
), pp.
1582
1587
.
35.
Hirokawa
,
S.
,
Solomonow
,
M.
,
Luo
,
Z.
,
Lu
,
Y.
, and
D'Ambrosia
,
R.
,
1991
, “
Muscular Co-Contraction and Control of Knee Stability
,”
J. Electromyography Kinesiology
,
1
(
3
), pp.
199
208
.
36.
Ackermann
,
M.
, and
Schiehlen
,
W.
,
2006
, “
Dynamic Analysis of Human Gait Disorder and Metabolical Cost Estimation
,”
Arch. Appl. Mech.
,
75
(
10
), pp.
569
594
.
37.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2013
, “
Efficient Hyper-Volumetric Contact Dynamic Modelling of the Foot Within Human Gait Simulations
,”
ASME
Paper No. DETC2013-13446.
38.
Shourijeh
,
M. S.
, and
McPhee
,
J.
,
2015
, “
Foot–Ground Contact Modeling Within Human Gait Simulations: From Kelvin–Voigt to Hyper-Volumetric Models
,”
Multibody Syst. Dyn.
,
35
(
4
), pp.
393
407
.
You do not currently have access to this content.