The nonlinear fractional-order Fokker–Planck differential equations have been used in many physical transport problems which take place under the influence of an external force filed. Therefore, high-accuracy numerical solutions are always needed. In this article, reproducing kernel theory is used to solve a class of nonlinear fractional Fokker–Planck differential equations. The main characteristic of this approach is that it induces a simple algorithm to get the approximate solution of the equation. At the same time, an effective method for obtaining the approximate solution is established. In addition, some numerical examples are given to demonstrate that our method has lesser computational work and higher precision.

References

References
1.
Agrawal
,
O. P.
,
Tenreiro
,
J. A.
, and
Sabatier
,
J.
,
2004
, “
Introduction
,”
Nonlinear Dyn.
,
38
, pp.
1
2
.
2.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
London
.
3.
Zhao
,
D.
,
Yang
,
X.
, and
Srivastava
,
H. M.
,
2015
, “
Some Fractal Heat-Transfer Problems With Local Fractional Calculus
,”
Therm. Sci.
,
19
(
5
), pp.
1867
1871
.
4.
Yang
,
X.
,
Machdo
,
J.
, and
Hristor
,
J.
,
2016
, “
Nonlinear Dynamics for Local Fractional Burgers' Equation Arising in Fractal Flow
,”
Nonlinear Dyn.
,
84
(1), pp.
3
7
.
5.
Ji
,
J.
,
2015
, “
Discrete Fractional Diffusion Equation With a Source Term
,”
J. Comput. Complexity Appl.
,
1
(
1
), pp.
10
14
.
6.
Wu
,
F.
, and
Liu
,
J. F.
,
2016
, “
Discrete Fractional Creep Model of Salt Rock
,”
J. Comput. Complexity Appl.
,
2
(
1
), pp.
1
6
.
7.
Zhou
,
X.
,
Liu
,
B.
, and
Song
,
Y.
,
2016
, “
Numerical Method for Differential-Algebraic Equations of Fractional Order
,”
J. Comput. Complexity Appl.
,
1
(
2
), pp.
54
63
.
8.
Tatari
,
M.
,
Dehghan
,
M.
, and
Razzaghi
,
M.
,
2007
, “
Application of the Adomian Decomposition Method for the Fokker–Planck Equation
,”
Math. Comput. Model.
,
45
(
5
), pp.
639
650
.
9.
Metzler
,
R.
,
Barkai
,
E.
, and
Klafter
,
J.
,
1999
, “
Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker–Planck Equation Approach
,”
Phys. Rev. Lett.
,
82
(
18
), pp.
3563
3567
.
10.
Tsallis
,
C.
, and
Lenzi
,
E. K.
,
2002
, “
Anomalous Diffusion: Nonlinear Fractional Fokker–Planck Equation
,”
Chem. Phys.
,
284
(
1
), pp.
341
347
.
11.
Silva
,
A. T.
,
Lenzi
,
E.
,
Evangelista
,
L.
,
Lenzi
,
M.
, and
da Silva
,
L.
,
2007
, “
Fractional Nonlinear Diffusion Equation Solutions and Anomalous Diffusion
,”
Phys. A
,
375
(
1
), pp.
65
71
.
12.
Frank
,
T. D.
,
2004
, “
Autocorrelation Functions of Nonlinear Fokker–Planck Equations
,”
Eur. Phys. J. B
,
37
(
2
), pp.
139
142
.
13.
Wu
,
C. H.
, and
Lu
,
L. Z.
,
2010
, “
Implicit Numerical Approximation Scheme for the Fractional Fokker–Planck Equation
,”
Appl. Math. Comput.
,
216
(
7
), pp.
1945
1955
.
14.
Deng
,
W.
,
2007
, “
Numerical Algorithm for the Time Fractional Fokker–Planck Equation
,”
J. Comput. Phys.
,
227
(
2
), pp.
1510
1522
.
15.
Deng
,
W.
,
2008
, “
Finite Element Method for the Space and Time Fractional Fokker–Planck Equation
,”
SIAM J. Numer. Anal.
,
47
(
1
), pp.
204
226
.
16.
Mei
,
S. L.
, and
Zhu
,
D. H.
,
2013
, “
Interval Shannon Wavelet Collocation Method for Fractional Fokker–Planck Equation
,”
Adv. Math. Phys.
,
2013
(
5
), pp.
1
12
.
17.
Chen
,
S.
,
Liu
,
F.
,
Zhuang
,
P.
, and
Anh
,
V.
,
2009
, “
Finite Difference Approximations for the Fractional Fokker–Planck Equation
,”
Appl. Math. Model.
,
33
(
1
), pp.
256
273
.
18.
Deng
,
K. Y.
, and
Deng
,
W. H.
,
2012
, “
Finite Difference/Predictor-Corrector Approximations for the Space and Time Fractional Fokker–Planck Equation
,”
Appl. Math. Lett.
,
25
(
11
), pp.
1815
1821
.
19.
Vong
,
S.
, and
Wang
,
Z.
,
2015
, “
A High Order Compact Finite Difference Scheme for Time Fractional Fokker–Planck Equations
,”
Appl. Math. Lett.
,
43
(1), pp.
38
43
.
20.
Zhao
,
Z. G.
,
Li
,
C. P.
,
Mendes
,
R. S.
, and
Pedron
,
I. T.
,
2012
, “
A Numerical Approach to the Generalized Nonlinear Fractional Fokker–Planck Equation
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3075
3089
.
21.
Du
,
J.
, and
Cui
,
M.
,
2010
, “
An Efficient Computational Method for Linear Fifth-Order Two-Point Boundary Value Problems
,”
Comput. Math. Appl.
,
59
(
2
), pp.
903
911
.
22.
Cui
,
M.
, and
Lin
,
Y.
,
2009
,
Nonlinear Numerical Analysis in the Reproducing Kernel Spaces
,
Nova Science Publisher
,
New York
.
23.
Lin
,
Y.
, and
Zhou
,
Y.
,
2009
, “
Solving Nonlinear Pseudoparabolic Equations With Nonlocal Boundary Conditions in Reproducing Kernel Space
,”
Numer. Algorithms
,
52
(
2
), pp.
173
186
.
24.
Jiang
,
W.
, and
Lin
,
Y.
,
2010
, “
Anti-Periodic Solutions for Rayleigh-Type Equations Via the Reproducing Kernel Hilbert Space Method
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
(
7
), pp.
1754
1758
.
25.
Du
,
H.
,
Zhao
,
G. L.
, and
Zhao
,
C. Y.
,
2014
, “
Reproducing Kernel Method for Solving Fredholm Integro-Differential Equations With Weakly Singularity
,”
J. Comput. Appl. Math.
,
255
, pp.
122
132
.
26.
Arqub
,
O. A.
,
Al-Smadi
,
M.
, and
Momani
,
S.
,
2013
, “
Solving Fredholm Integro-Differential Equations Using Reproducing Kernel Hilbert Space Method
,”
Appl. Math. Comput.
,
219
(
17
), pp.
8938
8948
.
27.
Wang
,
Y. L.
,
Du
,
M. J.
,
Tan
,
F. G.
,
Li
,
Z. Y.
, and
Nie
,
T. F.
,
2013
, “
Using Reproducing Kernel for Solving a Class of Fractional Partial Differential Equation With Non-Classical Conditions
,”
Appl. Math. Comput.
,
219
(
11
), pp.
5918
5925
.
28.
Jiang
,
W.
, and
Tian
,
T.
,
2015
, “
Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Fractional Order by the Reproducing Kernel Method
,”
Appl. Math. Model.
,
39
(
16
), pp.
4871
4876
.
29.
Geng
,
F.
, and
Cui
,
M.
,
2012
, “
A Reproducing Kernel Method for Solving Nonlocal Fractional Boundary Value Problems
,”
Appl. Math. Comput.
,
25
(
5
), pp.
818
823
.
30.
Diethelm
,
K.
,
2004
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer
,
New York
.
31.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent
,”
J. R. Astron. Soc.
,
13
(
5
), pp.
529
539
.
32.
Wu
,
B.
, and
Lin
,
Y.
,
2012
,
Applied Reproducing Kernel Theory
,
Science Publisher
.
33.
Young
,
N.
,
1988
,
An Introduction to Hilbert Space
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.