This paper aims at analyzing the size-dependent nonlinear dynamical behavior of a geometrically imperfect microbeam made of a functionally graded (FG) material, taking into account the longitudinal, transverse, and rotational motions. The size-dependent property is modeled by means of the modified couple stress theory, the shear deformation and rotary inertia are modeled using the Timoshenko beam theory, and the graded material property in the beam thickness direction is modeled via the Mori–Tanaka homogenization technique. The kinetic and size-dependent potential energies of the system are developed as functions of the longitudinal, transverse, and rotational motions. On the basis of an energy method, the continuous models of the system motion are obtained. Upon application of a weighted-residual method, the reduced-order model is obtained. A continuation method along with an eigenvalue extraction technique is utilized for the nonlinear and linear analyses, respectively. A special attention is paid on the effects of the material gradient index, the imperfection amplitude, and the length-scale parameter on the system dynamical response.

References

References
1.
,
C.
,
Lim
,
C. W.
, and
Chen
,
W.
,
2009
, “
Size-Dependent Elastic Behavior of FGM Ultra-Thin Films Based on Generalized Refined Theory
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1176
1185
.
2.
Madinei
,
H.
,
Rezazadeh
,
G.
, and
Azizi
,
S.
,
2015
, “
Stability and Bifurcation Analysis of an Asymmetrically Electrostatically Actuated Microbeam
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021002
.
3.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Statics and Dynamics of MEMS Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
.
4.
Ruzziconi
,
L.
,
Younis
,
M. I.
, and
Lenci
,
S.
,
2012
, “
An Efficient Reduced-Order Model to Investigate the Behavior of an Imperfect Microbeam Under Axial Load and Electric Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011014
.
5.
Davis
,
W. O.
,
O'Reilly
,
O. M.
, and
Pisano
,
A. P.
,
2004
, “
On the Nonlinear Dynamics of Tether Suspensions for MEMS
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
326
331
.
6.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
7.
Lam
,
D. C. C.
, and
Chong
,
A. C. M.
,
1999
, “
Indentation Model and Strain Gradient Plasticity Law for Glassy Polymers
,”
J. Mater. Res.
,
14
(09), pp.
3784
3788
.
8.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), p.
1060
.
9.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Shakouri
,
A. H.
, and
Rouhi
,
H.
,
2016
, “
Nonlinear Bending Analysis of First-Order Shear Deformable Microscale Plates Using a Strain Gradient Quadrilateral Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051014
.
10.
Belardinelli
,
P.
,
Lenci
,
S.
, and
Brocchini
,
M.
,
2014
, “
Modeling and Analysis of an Electrically Actuated Microbeam Based on Nonclassical Beam Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031016
.
11.
Ghayesh
,
M.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Coupled Nonlinear Size-Dependent Behaviour of Microbeams
,”
Appl. Phys. A
,
112
(
2
), pp.
329
338
.
12.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2016
, “
Size-Dependent Parametric Dynamics of Imperfect Microbeams
,”
Int. J. Eng. Sci.
,
99
, pp.
39
55
.
13.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
.
14.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2015
, “
Internal Energy Transfer in Dynamical Behavior of Slightly Curved Shear Deformable Microplates
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041002
.
15.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2016
, “
Size-Dependent Performance of Microgyroscopes
,”
Int. J. Eng. Sci.
,
100
, pp.
99
111
.
16.
Ilkhani
,
M. R.
, and
Hosseini-Hashemi
,
S. H.
,
2016
, “
Size Dependent Vibro-Buckling of Rotating Beam Based on Modified Couple Stress Theory
,”
Compos. Struct.
,
143
, pp.
75
83
.
17.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Nonlinear Dynamics of Microplates
,”
Int. J. Eng. Sci.
,
86
, pp.
60
73
.
18.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
In-Plane and Out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
.
19.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
.
20.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2016
, “
Nonlinear Size-Dependent Dynamics of an Imperfect Shear Deformable Microplate
,”
J. Sound Vib.
,
361
, pp.
226
242
.
21.
Farokhi
,
H.
,
Ghayesh
,
M. H.
,
Kosasih
,
B.
, and
Akaber
,
P.
,
2016
, “
On the Nonlinear Resonant Dynamics of Timoshenko Microbeams: Effects of Axial Load and Geometric Imperfection
,”
Meccanica
,
51
(
1
), pp.
155
169
.
22.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Thermo-Mechanical Dynamics of Perfect and Imperfect Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
91
, pp.
12
33
.
23.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2012
, “
Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031009
.
24.
Shafiei
,
N.
,
Kazemi
,
M.
, and
Ghadiri
,
M.
,
2016
, “
On Size-Dependent Vibration of Rotary Axially Functionally Graded Microbeam
,”
Int. J. Eng. Sci.
,
101
, pp.
29
44
.
25.
Dehrouyeh-Semnani
,
A. M.
,
Dehrouyeh
,
M.
,
Torabi-Kafshgari
,
M.
, and
Nikkhah-Bahrami
,
M.
,
2015
, “
An Investigation Into Size-Dependent Vibration Damping Characteristics of Functionally Graded Viscoelastically Damped Sandwich Microbeams
,”
Int. J. Eng. Sci.
,
96
, pp.
68
85
.
26.
Thai
,
H.-T.
,
Vo
,
T. P.
,
Nguyen
,
T.-K.
, and
Lee
,
J.
,
2015
, “
Size-Dependent Behavior of Functionally Graded Sandwich Microbeams Based on the Modified Couple Stress Theory
,”
Composite Structures
,
123
, pp.
337
349
.
27.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Gholami
,
R.
,
Mohammadi
,
V.
, and
Darabi
,
M. A.
,
2013
, “
Thermal Postbuckling Behavior of Size-Dependent Functionally Graded Timoshenko Microbeams
,”
Int. J. Non-Linear Mech.
,
50
, pp.
127
135
.
28.
Akgöz
,
B.
, and
Civalek
,
Ö.
,
2014
, “
Thermo-Mechanical Buckling Behavior of Functionally Graded Microbeams Embedded in Elastic Medium
,”
Int. J. Eng. Sci.
,
85
, pp.
90
104
.
29.
Aghazadeh
,
R.
,
Cigeroglu
,
E.
, and
Dag
,
S.
,
2014
, “
Static and Free Vibration Analyses of Small-Scale Functionally Graded Beams Possessing a Variable Length Scale Parameter Using Different Beam Theories
,”
Euro. J. Mech-A/Solids
,
46
, pp.
1
11
.
30.
Lei
,
J.
,
He
,
Y.
,
Zhang
,
B.
,
Gan
,
Z.
, and
Zeng
,
P.
,
2013
, “
Bending and Vibration of Functionally Graded Sinusoidal Microbeams Based on the Strain Gradient Elasticity Theory
,”
Int. J. of Eng. Sci.
,
72
, pp.
36
52
.
31.
Kahrobaiyan
,
M.
,
Rahaeifard
,
M.
,
Tajalli
,
S.
, and
Ahmadian
,
M.
,
2012
, “
A Strain Gradient Functionally Graded Euler–Bernoulli Beam Formulation
,”
Int. J. Eng. Sci.
,
52
, pp.
65
76
.
32.
Sahmani
,
S.
, and
Ansari
,
R.
,
2013
, “
Size-Dependent Buckling Analysis of Functionally Graded Third-Order Shear Deformable Microbeams Including Thermal Environment Effect
,”
App. Math. Model.
,
37
(
23
), pp.
9499
9515
.
33.
Dehrouyeh-Semnani
,
A. M.
,
Mostafaei
,
H.
, and
Nikkhah-Bahrami
,
M.
,
2016
, “
Free Flexural Vibration of Geometrically Imperfect Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
105
, pp.
56
79
.
34.
Arbind
,
A.
, and
Reddy
,
J.
,
2013
, “
Nonlinear Analysis of Functionally Graded Microstructure-Dependent Beams
,”
Composite Structures
,
98
, pp.
272
281
.
35.
Ke
,
L.-L.
,
Wang
,
Y.-S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Nonlinear Free Vibration of Size-Dependent Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
256
267
.
36.
Rahaeifard
,
M.
,
Kahrobaiyan
,
M.
,
Ahmadian
,
M.
, and
Firoozbakhsh
,
K.
,
2013
, “
Strain Gradient Formulation of Functionally Graded Nonlinear Beams
,”
Int. J. Eng. Sci.
,
65
, pp.
49
63
.
37.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2011
, “
Free Vibration Analysis of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Timoshenko Beam Theory
,”
Compos. Struct.
,
94
(
1
), pp.
221
228
.
38.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Composites, Part B
,
60
, pp.
423
439
.
39.
Dehrouyeh-Semnani
,
A. M.
, and
Nikkhah-Bahrami
,
M.
,
2015
, “
A Discussion on Incorporating the Poisson Effect in Microbeam Models Based on Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
86
, pp.
20
25
.
40.
Ghayesh
,
M. H.
,
Kazemirad
,
S.
, and
Reid
,
T.
,
2012
, “
Nonlinear Vibrations and Stability of Parametrically Exited Systems With Cubic Nonlinearities and Internal Boundary Conditions: A General Solution Procedure
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3299
3311
.
41.
Reddy
,
J.
,
2011
, “
Microstructure-Dependent Couple Stress Theories of Functionally Graded Beams
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2382
2399
.
You do not currently have access to this content.