A rotating flexible beam undergoing large deformation is known to exhibit chaotic motion for certain parameter values. This work deals with an approach for control of chaos known as chaos synchronization. A nonlinear controller based on the Lyapunov stability theory is developed, and it is shown that such a controller can avoid the sensitive dependence of initial conditions seen in all chaotic systems. The proposed controller ensures that the error between the controlled and the original system, for different initial conditions, asymptotically goes to zero. A numerical example using the parameters of a rotating power generating wind turbine blade is used to illustrate the theoretical approach.

References

References
1.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(Applied Mathematical Sciences), Vol.
42
,
Springer-Verlag
,
New York
.
2.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
1st ed.
,
Wiley
, Hoboken, NJ.
3.
Burov
,
A. A.
,
1986
, “
On the Non-Existence of a Supplementary Integral in the Problem of a Heavy Two-Link Plane Pendulum
,”
Prikl. Mat. Mekh., USSR
,
50
(
1
), pp.
123
125
.
4.
Lankalapalli
,
S.
, and
Ghosal
,
A.
,
1996
, “
Possible Chaotic Motion in a Feedback Controlled 2R Robot
,”
IEEE International Conference on Robotics and Automation
, Minneapolis, MN, pp.
1241
1246
.
5.
Reddy
,
B. S.
, and
Ghosal
,
A.
,
2015
, “
Nonlinear Dynamics of a Rotating Flexible Link
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061014
.
6.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
7.
Pinto
,
F. H. I. P.
,
Ferreira
,
A. M.
, and
Savi
,
M.
,
2004
, “
Chaos Control in a Nonlinear Pendulum Using a Semi-Continuous Method
,”
Chaos, Solitons Fractals
,
22
(
3
), pp.
653
668
.
8.
De Paula
,
A. S.
, and
Savi
,
M. A.
,
2009
, “
Controlling Chaos in a Nonlinear Pendulum Using an Extended Time-Delayed Feedback Control Method
,”
Chaos, Solitons Fractals
,
42
(
5
), pp.
2981
2988
.
9.
Jahromi
,
S. A. Z.
,
Haji
,
A. H.
, and
Mahzoon
,
M.
,
2005
, “
Non-Linear Dynamics and Chaos Control of a Physical Pendulum With Rotating Mass
,”
13th Annual (International) Mechanical Engineering Conference
, Isfahan University of Technology, Isfahan, Iran.
10.
Starett
,
J.
, and
Tagg
,
R.
,
1995
, “
Control of a Chaotic Parametrically Driven Pendulum
,”
Phys. Rev. Lett.
,
74
(
11
), pp.
1974
1977
.
11.
Pyragas
,
K.
,
2001
, “
Control of Chaos Via an Unstable Delayed Feedback Controller
,”
Phys. Rev. Lett.
,
86
(
11
), pp.
2265
2268
.
12.
Fradkov
,
L. A.
, and
Evans
,
J. R.
,
2005
, “
Control of Chaos: Methods and Applications in Engineering
,”
Annu. Rev. Control
,
29
(
1
), pp.
33
56
.
13.
Ruiqi
,
W.
, and
Zhujun
,
J.
,
2004
, “
Chaos Control of Chaotic Pendulum System
,”
Chaos, Solitons Fractals
,
21
(1), pp.
201
207
.
14.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
15.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1991
, “
Synchronizing Chaotic Circuits
,”
IEEE Trans. Circuits Syst.
,
38
(4), pp.
453
456
.
16.
Wu
,
X.
, and
Lu
,
J.
,
2003
, “
Parameter Identification and Backstepping Control of Uncertain Lu System
,”
Chaos, Solitons Fractals
,
18
(4), pp.
721
729
.
17.
Yu
,
Y. G.
, and
Zhang
,
S. C.
,
2004
, “
Adaptive Backstepping Synchronization of Uncertain Chaotic Systems
,”
Chaos, Solitons Fractals
,
21
(3), pp.
643
649
.
18.
Yau
,
H. T.
,
2004
, “
Design of Adaptive Sliding Mode Controller for Chaos Synchronization With Uncertainties
,”
Chaos, Solitons Fractals
,
22
(
2
), pp.
341
347
.
19.
Wu
,
X.
,
Wang
,
L.
, and
Zhang
,
J.
,
2012
, “
Synchronisation of Unified Chaotic Systems With Uncertain Parameters in Finite Time
,”
Int. J. Modell., Identif. Control
,
17
(
4
), pp.
295
301
.
20.
Vaidyanathan
,
S.
,
2014
, “
Global Chaos Synchronisation of Identical Li-Wu Chaotic Systems Via Sliding Mode Control
,”
Int. J. Modell., Identif. Control
,
22
(
2
), pp.
170
177
.
21.
Sundarapandian
,
V.
,
Sivaperumal
,
S.
, and
Ahmad
,
T. A.
,
2015
, “
Global Chaos Synchronisation of Identical Chaotic Systems Via Novel Sliding Mode Control Method and Its Application to Zhu System
,”
Int. J. Modell., Identif. Control
,
23
(
1
), pp.
92
100
.
22.
Handa
,
H.
, and
Sharma
,
B. B.
,
2014
, “
Simple Synchronisation Scheme of Chaotic Chua's Systems With Cubic Nonlinearity in Complex Coupled Networks
,”
Int. J. Appl. Nonlinear Sci.
,
1
(
4
), pp.
300
311
.
23.
Saha
,
P.
,
Ghosh
,
D.
, and
Chowdhury
,
A. R.
,
2014
, “
Modified Projective Synchronisation of Different Order Chaotic Systems With Adaptive Scaling Factor
,”
Int. J. Appl. Nonlinear Sci.
,
1
(
3
), pp.
230
246
.
24.
Shaker
,
M. C.
, and
Ghosal
,
A.
,
2006
, “
Nonlinear Modeling of Flexible Link Manipulators Using Non-Dimensional Variables
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
123
134
.
25.
Nayfeh
,
A. H.
,
1993
,
Introduction to Perturbation Techniques
,
Wiley
, Hoboken, NJ.
26.
Endurance Wind Power Inc., 2016, Endurance Wind Power Inc., Surrey, BC, Canada, accessed Oct. 6, 2016, http://www.endurancewindpower.com/e3120.html
27.
MATLAB
,
2012
, “
Version 8.0 (R2012b)
,” The MathWorks, Natick, MA.
You do not currently have access to this content.