This paper analyses forest fires (FF) in the U.S. during 1984–2013, based on data collected by the monitoring trends in burn severity (MTBS) project. The study adopts the tools of dynamical systems to tackle information about space, time, and size. Computational visualization methods are used for reducing the information dimensionality and to unveil the relationships embedded in the data.

References

References
1.
Flannigan
,
M
.,
2015
, “
Carbon Cycle: Fire Evolution Split by Continent
,”
Nat. Geosci.
,
8
(
3
), pp.
167
168
.
2.
Keeley
,
J. E.
,
2009
, “
Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage
,”
Int. J. Wildland Fire
,
18
(
1
), pp.
116
126
.
3.
San-Miguel-Ayanz
,
J.
,
Schulte
,
E.
,
Schmuck
,
G.
, and
Camia
,
A.
,
2013
, “
The European Forest Fire Information System in the Context of Environmental Policies of the European Union
,”
For. Policy Econ.
,
29
, pp.
19
25
.
4.
Machado
,
J.
, and
Lopes
,
A.
,
2014
, “
Complex Dynamics of Forest Fires
,”
Math. Probl. Eng.
,
2014
, p.
575872
.
5.
Bak
,
P.
,
Chen
,
K.
, and
Tang
,
C.
,
1990
, “
A Forest-Fire Model and Some Thoughts on Turbulence
,”
Phys. Lett. A
,
147
(
5
), pp.
297
300
.
6.
Reed
,
W. J.
, and
McKelvey
,
K. S.
,
2002
, “
Power-Law Behaviour and Parametric Models for the Size-Distribution of Forest Fires
,”
Ecol. Modell.
,
150
(
3
), pp.
239
254
.
7.
Eidenshink
,
J.
,
Schwind
,
B.
,
Brewer
,
K.
,
Zhu
,
Z.-L.
,
Quayle
,
B.
, and
Howard
,
S.
,
2007
, “
Project for Monitoring Trends in Burn Severity
,”
Fire Ecol.
,
3
(
1
), pp.
3
21
.
8.
Jain
,
A. K.
,
2010
, “
Data Clustering: 50 Years Beyond K-Means
,”
Pattern Recognit. Lett.
,
31
(
8
), pp.
651
666
.
9.
Okabe
,
A.
,
Boots
,
B.
,
Sugihara
,
K.
, and
Chiu
,
S. N.
,
1999
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
, Hoboken, NJ.
10.
Lopes
,
A. M.
, and
Machado
,
J. T.
,
2015
, “
Entropy Analysis of Industrial Accident Data Series
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031006
.
11.
Asgarani
,
S.
, and
Mirza
,
B.
,
2015
, “
Two-Parameter Entropies, Sk,r, and Their Dualities
,”
Phys. A
,
417
, pp.
185
192
.
12.
Khinchin
,
A. I.
,
1957
,
Mathematical Foundations of Information Theory
, Dover, Mineola, NY.
13.
Kenneth
,
M.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
14.
Machado
,
J.
,
Lopes
,
A.
,
Duarte
,
F.
,
Ortigueira
,
M.
, and
Rato
,
R.
,
2014
, “
Rhapsody in Fractional
,”
Fract. Calculus Appl. Anal.
,
17
(
4
), pp.
1188
1214
.
15.
Machado
,
J. T.
,
2014
, “
Fractional Order Generalized Information
,”
Entropy
,
16
(
4
), pp.
2350
2361
.
16.
Borg
,
I.
, and
Groenen
,
P. J.
,
2005
,
Modern Multidimensional Scaling: Theory and Applications
,
Springer
, Berlin.
17.
Lopes
,
A. M.
, and
Machado
,
J. T.
,
2014
, “
Analysis of Temperature Time-Series: Embedding Dynamics Into the MDS Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
851
871
.
18.
Lopes
,
A. M.
,
Machado
,
J. T.
,
Pinto
,
C. M.
, and
Galhano
,
A. M.
,
2013
, “
Fractional Dynamics and MDS Visualization of Earthquake Phenomena
,”
Comput. Math. Appl.
,
66
(
5
), pp.
647
658
.
19.
Cha
,
S.-H.
,
2007
, “
Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions
,”
Int. J. Mathe. Models Meth. App. Sci.
,
4
(
1
), pp.
300
307
.
20.
Rousseeuw
,
P. J.
,
1987
, “
Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis
,”
J. Comput. Appl. Math.
,
20
, pp.
53
65
.
21.
Draper
,
N. R.
,
Smith
,
H.
, and
Pownell
,
E.
,
2014
,
Applied Regression Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.