The size-dependent model is studied based on the modified couple stress theory for the geometrically nonlinear curvilinear Timoshenko beam made from a functionally graded material having its properties changed along the beam thickness. The influence of the size-dependent coefficient and the material grading on the stability of the curvilinear beams is investigated with the use of the setup method. The second-order accuracy finite difference method is used to solve the problem of nonlinear partial differential equations (PDEs) by reducing it to the Cauchy problem. The obtained set of nonlinear ordinary differential equations (ODEs) is then solved by the fourth-order Runge–Kutta method. The relaxation method is employed to solve numerous static problems based on the dynamic approach. Eight different combinations of size-dependent coefficients and the functionally graded material coefficient are used to study the stress-strain responses of Timoshenko beams. Stability loss of the curvilinear Timoshenko beams is investigated using the Lyapunov criterion based on the estimation of the Lyapunov exponents. Beams with/without the size-dependent behavior, homogeneous beams, and functionally graded beams having the same stiffness are investigated. It is shown that in straight-line beams, the size-dependent effect decreases the beam deflection. The same is observed if the most rigid layer is located on the top of the beam. In the curvilinear Timoshenko beam, such a location of the most rigid layer essentially improves the beam strength against stability loss. The observed transition of the largest Lyapunov exponent from a negative to positive value corresponds to the transition from a precritical to postcritical beam state.

References

References
1.
Koizumi
,
M.
,
1993
, “
The Concept of FGM
,”
Ceram. Trans. Funct. Graded Mater.
,
34
, pp.
3
10
.
2.
Sankar
,
B. V.
,
2001
, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
689
696
.
3.
Chakraborty
,
A.
,
Gopalakrishnan
,
S.
, and
Reddy
,
J. N.
,
2003
, “
A New Beam Finite Element for the Analysis of Functionally Graded Materials
,”
Int. J. Mech. Sci.
,
45
(
3
), pp.
519
539
.
4.
Aydogdu
,
M.
, and
Taskin
,
V.
,
2007
, “
Free Vibration Analysis of Functionally Graded Beams With Simply Supported Edges
,”
Mater. Des.
,
28
(
5
), pp.
1651
1656
.
5.
Fu
,
Y. Q.
,
Du
,
H. J.
, and
Zhang
,
S.
,
2003
, “
Functionally Graded TiN/TiNi Shape Memory Alloy Films
,”
Mater. Lett.
,
57
(
20
), pp.
2995
2999
.
6.
Fu
,
Y. Q.
,
Du
,
H. J.
,
Huang
,
W. M.
,
Zhang
,
S.
, and
Hu
,
M.
,
2004
, “
TiNi-Based Thin Films in MEMS Applications: A Review
,”
Sens. Actuators A.
,
112
(
2–3
), pp.
395
408
.
7.
Witvrouw
,
A.
, and
Mehta
,
A.
,
2005
, “
The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications
,”
Funct. Graded Mater. VIII
,
492–493
, pp.
255
260
.
8.
Lee
,
Z.
,
Ophus
,
C.
,
Fischer
,
L. M.
,
Nelson-Fitzpatrick
,
N.
,
Westra
,
K. L.
,
Evoy
,
S.
,
Radmilovic
,
V.
,
Dahmen
,
U.
, and
Mitlin
,
D.
,
2006
, “
Metallic NEMS Components Fabricated From Nanocomposite Al–Mo Films
,”
Nanotechnology
,
17
(
12
), pp.
3063
3070
.
9.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1992
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
10.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.
11.
Timoshenko
,
S. P.
,
1921
, “
On the Correction for Shear of Differential Equation for Transverse Vibration of Prismatic Bar
,”
Philos. Mag.
,
41
(
245
), pp.
744
746
.
12.
Arbind
,
A.
, and
Reddy
,
J. N.
,
2013
, “
Nonlinear Analysis of Functionally Graded Microstructure-Dependent Beams
,”
Compos. Struct.
,
98
, pp.
272
281
.
13.
Ke
,
L. L.
,
Wang
,
Y. S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Nonlinear Free Vibration of Size-Dependent Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
50
(
1
), pp.
256
267
.
14.
Ke
,
L.-L.
, and
Wang
,
Y.-S.
,
2011
, “
Size Effect on Dynamic Stability of Functionally Graded Microbeams Based on a Modified Couple Stress Theory
,”
Compos. Struct.
,
93
(
2
), pp.
342
350
.
15.
Liu
,
Y. P.
, and
Reddy
,
J. N.
,
2011
, “
A Nonlocal Curved Beam Model Based on a Modified Coupled Stress Theory
,”
Int. J. Str. Stab. Dyn.
,
11
(
3
), pp. 495–512.
16.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2013
, “
Size-Dependent Vibration of Functionally Graded Curved Microbeams Based on the Modified Strain Gradient Elasticity Theory
,”
Arch. Appl. Mech.
,
83
(
10
), pp.
1439
1449
.
17.
Zhang
,
B.
,
He
,
Y.
,
Liu
,
D.
,
Gan
,
Z.
, and
Shen
,
L.
,
2013
, “
A Novel Size-Dependent Functionally Graded Curved Mircobeam Model Based on the Strain Gradient Elasticity Theory
,”
Compos. Struct.
,
106
, pp.
374
392
.
18.
Krysko
,
A. V.
,
Awrejcewicz
,
J.
,
Pavlov
,
S. P.
,
Zhigalov
,
M. V.
, and
Krysko
,
V. A.
,
2014
, “
On the Iterative Methods of Linearization, Decrease of Order and Dimension of the Kàrmàn-Type PDEs
,”
Sci. World J.
,
2014
, p.
792829
.
19.
Krysko
,
A. V.
,
Awrejcewicz
,
J.
,
Saltykova
,
O. A.
,
Zhigalov
,
M. V.
, and
Krysko
,
V. A.
,
2014
, “
Investigations of Chaotic Dynamics of Multi-Layer Beams Taking Into Account Rotational Inertial Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
8
), pp.
2568
2589
.
20.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
,
Papkova
,
I. V.
, and
Krysko
,
A. V.
,
2016
,
Deterministic Chaos in One Dimensional Continuous System
,
World Scientific
,
Singapore, Singapore
.
21.
Volmir
,
A. S.
,
1972
,
Nonlinear Dynamics Plates and Shells
,
Science
,
Мoscow, Russia
(in Russian).
22.
Gao
,
X.-L.
, and
Zhang
,
G. Y.
,
2015
, “
A Microstructure- and Surface Energy-Dependent Third-Order Shear Deformation Beam Model
,”
Z. Angew. Math. Phys.
,
66
(
4
), pp.
1871
1894
.
23.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Coupled Nonlinear Size-Dependent Behaviour of Microbeams
,”
Appl. Phys. A
,
112
(
2
), pp.
329
338
.
24.
Tikhonov
,
А. N.
, and
Arsenin
,
V. Ya.
,
1979
,
Methods of Solution of the Non-Corrected Problems
,
Nauka
,
Мoscow, Russia
(in Russian).
25.
Fedoseyev
,
V. I.
,
1963
, “
On the Method of Finding Solution to the Non-Linear Stability Problems of Deformable Systems
,”
Prikl. Mat. Mekh.
,
27
(
2
), pp.
265
274
(in Russian).
26.
Krysko
,
V. A.
,
Awrejcewicz
,
J.
, and
Komarov
,
S. A.
,
2005
, “
Nonlinear Deformations of Spherical Panels Subjected to Transversal Load Action
,”
Comp. Meth. Appl. Mech. Eng.
,
194
(27–29), pp.
3108
3126
.
You do not currently have access to this content.