The chaotic vibration analysis of a heavy articulated vehicle (HAV) under consecutive speed control humps (SCHs) excitation is studied. The vehicle is modeled as a nonlinear half-truck oscillatory system with three axles. The suspension system between the truck bodies and axles is equipped with passive viscous damper and magnetorheological (MR) damper. The consecutive SCHs-speed coupling excitation function is presented by a half-sine wave with constant amplitude and variable frequency. The nonlinear dynamic behavior of the system is investigated by special respective techniques. Also, the ride comfort is assessed by the RMS value of truck bodies' accelerations. The results reveal that the quasi-periodic motion is observed at lower speeds when the truck moves on SCHs without load; while in the presence of the load, the dynamic characteristics of the system confirm the chaotic vibration possibility in a widespread range at higher speeds. Further studies indicate that the chaotic behaviors can directly affect on driving comfort and lead to the ride comfort becoming lower. The obtained results can be helpful in designing the oscillatory system for the heavy vehicles to preserve the comfort of drivers and the protection of load.

References

References
1.
Gillespie
,
T. D.
,
1985
, “
Heavy Truck Ride
,”
SAE
Technical Paper No. 850001.
2.
Lewis
,
A. S.
, and
El-Gindy
,
M.
,
2003
, “
Sliding Mode Control for Rollover Prevention of Heavy Vehicle Based on Lateral Acceleration
,”
Int. J. Heavy Veh. Syst.
,
10
(
1–2
), pp.
9
34
.
3.
Awrejcewicz
,
J.
,
Dzyubak
,
L.
, and
Lamarque
,
C. H.
,
2008
, “
Modelling of Hysteresis Using Masing–Bouc–Wen's Framework and Search of Conditions for the Chaotic Responses
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
5
), pp.
939
958
.
4.
Song
,
X.
, and
Ahmadian
,
M.
,
2010
, “
Characterization of Semiactive Control System Dynamics With Magneto-Rheological Suspensions
,”
J. Vib. Control
,
16
(
10
), pp.
1439
1463
.
5.
Milecki
,
A.
, and
Hauke
,
M.
,
2012
, “
Application of Magnetorheological Fluid in Industrial Shock Absorbers
,”
Mech. Syst. Signal Process.
,
28
, pp.
528
541
.
6.
Talatahari
,
S.
,
Kaveh
,
A.
, and
Mohajer–Rahbari
,
N.
,
2012
, “
Parameter Identification of Bouc–Wen Model for MR Fluid Dampers Using Adaptive Charged System Search Optimization
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
2523
2534
.
7.
Dutta
,
S.
, and
Chakraborty
,
G.
,
2014
, “
Performance Analysis of Nonlinear Vibration Isolator With Magnetorheological Damper
,”
J. Sound Vib.
,
333
(
20
), pp.
5097
5114
.
8.
Yao
,
G. Z.
,
Yap
,
F. F.
,
Chen
,
G.
,
Li
,
W. H.
, and
Yeo
,
S. H.
,
2002
, “
MR Damper and Its Application for Semi-Active Control of Vehicle Suspension System
,”
Mechatronics
,
12
(
7
), pp.
963
973
.
9.
Guo
,
D. L.
,
Hu
,
H. Y.
, and
Yi
,
J. Q.
,
2004
, “
Neural Network Control for a Semi-Active Vehicle Suspension With a Magnetorheological Damper
,”
J. Vib. Control
,
10
(
3
), pp.
461
471
.
10.
Shen
,
Y.
,
Golnaraghi
,
M. F.
, and
Heppler
,
G. R.
,
2006
, “
Semi-Active Vibration Control Schemes for Suspension Systems Using Magnetorheological Dampers
,”
J. Vib. Control
,
12
(
1
), pp.
3
24
.
11.
Tusset
,
A. M.
,
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2009
, “
An Intelligent Controller Design for Magnetorheological Damper Based on a Quarter-Car Model
,”
J. Vib Control
,
15
(
12
), pp.
1907
1920
.
12.
Valasek
,
M.
,
Kortum
,
W.
,
Sika
,
Z.
,
Magdolen
,
L.
, and
Vaculín
,
O.
,
1998
, “
Development of Semi-Active Road Friendly Truck Suspensions
,”
Control Eng. Pract.
,
6
(
6
), pp.
735
744
.
13.
Hendrick
,
J. K.
, and
Yi
,
K.
,
1991
, “
The Effect of Alternative Heavy Truck Suspensions on Flexible Pavement Response
,” Society Automotive Engineers,
Working Paper No. 46
.
14.
Yi
,
K.
, and
Song
,
B. S.
,
1999
, “
A New Adaptive Skyhook Control of Vehicle Semi-Active Suspensions
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
3
), pp.
293
303
.
15.
Liao
,
W. H.
, and
Wang
,
D. H.
,
2003
, “
Semiactive Vibration Control of Train Suspension Systems Via Magnetorheological Dampers
,”
J. Intell. Mater. Syst. Struct.
,
14
(
3
), pp.
161
172
.
16.
Lau
,
Y. K.
, and
Liao
,
W. H.
,
2005
, “
Design and Analysis of Magnetorheological Dampers for Train Suspension
,”
Proc. Inst. Mech. Eng., Part F
,
219
(4), pp.
214
225
.
17.
Sahin
,
H.
,
Liu
,
Y.
,
Wang
,
X.
,
Gordaninejad
,
F.
, and
Evrensel
,
C.
,
2007
, “
Full-Scale Magnetorheological Fluid Dampers for Heavy Vehicle Rollover
,”
J. Intell. Mater. Syst. Struct.
,
18
(
12
), pp.
1161
1167
.
18.
Tsampardoukas
,
G.
,
Stammers
,
C. W.
, and
Guglielmino
,
E.
,
2008
, “
Hybrid Balance Control of a Magnetorheological Truck Suspension
,”
J. Sound Vib.
,
317
(
3–5
), pp.
514
536
.
19.
Yu
,
H.
,
Güvenç
,
L.
, and
Özgünera
,
Ü.
,
2008
, “
Heavy Duty Vehicle Rollover Detection and Active Roll Control
,”
Int. J. Veh. Mech. Mobility
,
46
(
6
), pp.
451
470
.
20.
Chen
,
C.
, and
Tomizuka
,
M.
,
2010
, “
Lateral Control of Commercial Heavy Vehicles
,”
Int. J. Veh. Mech. Mobility
,
33
(
6
), pp.
391
420
.
21.
Dehghani
,
R.
,
Khanlo
,
H. M.
, and
Fakhraei
,
J.
,
2016
, “
Active Chaos Control of a Heavy Articulated Vehicle Equipped With Magnetorheological Dampers
,”
J. Nonlinear Dyn.
,
87
(3), pp. 1923–1942.
22.
Zhu
,
Q.
, and
Ishitobi
,
M.
,
2006
, “
Chaotic Vibration of a Nonlinear Full-Vehicle Model
,”
Int. J. Solids Struct.
,
43
(
3–4
), pp.
747
759
.
23.
Fakhraei
,
J.
,
Khanlo
,
H. M.
,
Ghayour
,
M.
, and
Faramarzi
,
Kh.
,
2016
, “
The Influence of Road Bumps Characteristics on the Chaotic Vibration of a Nonlinear Full-Vehicle Model With Driver
,”
Int. J. Bifurcation Chaos
,
26
(
9
), p.
1650151
.
24.
Li
,
S.
,
Yang
,
S.
, and
Chen
,
L.
,
2012
, “
A Nonlinear Vehicle-Road Coupled Model for Dynamics Research
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), pp.
15
29
.
25.
Zhu
,
Q.
,
Tani
,
J.
, and
Takag
,
T.
,
1994
, “
Chaotic Vibrations of a Magnetically Levitated System With Two Degrees of Freedom
,”
J. Tech. Phys.
,
35
(1–2), pp.
171
184
.
26.
Pust
,
L.
, and
Szöllös
,
O.
,
1999
, “
The Forced Chaotic and Irregular Oscillations of the Nonlinear Two Degrees of Freedom (2DOF) System
,”
Int. J. Bifurcation Chaos
,
9
(
3
), pp.
479
491
.
27.
Belato
,
D.
,
Weber
,
H. I.
,
Balthazar
,
J. M.
, and
Mook
,
D. T.
,
2001
, “
Chaotic Vibration of a Nonideal Electro-Mechanical System
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1699
1706
.
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Non-Linear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
29.
Ruse
,
R.
,
Ivanov
,
R.
,
Staneva
,
G.
, and
Kadikyanov
,
G.
,
2016
, “
A Study of the Dynamic Parameters Influence Over the Behavior of the Two-Section Articulated Vehicle During the Lane Change Manoeuvre
,”
Transp. Probl.
,
11
(
1
), pp.
29
40
.
30.
Sampson
,
D. J. M.
, and
Cebon
,
D.
,
2003
, “
Achievable Roll Stability of Heavy Road Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
4
), pp.
269
287
.
31.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D
,
16
(
3
), pp.
285
317
.
You do not currently have access to this content.