Correlation and calibration using test data are natural ingredients in the process of validating computational models. Model calibration for the important subclass of nonlinear systems which consists of structures dominated by linear behavior with the presence of local nonlinear effects is studied in this work. The experimental validation of a nonlinear model calibration method is conducted using a replica of the École Centrale de Lyon (ECL) nonlinear benchmark test setup. The calibration method is based on the selection of uncertain model parameters and the data that form the calibration metric together with an efficient optimization routine. The parameterization is chosen so that the expected covariances of the parameter estimates are made small. To obtain informative data, the excitation force is designed to be multisinusoidal and the resulting steady-state multiharmonic frequency response data are measured. To shorten the optimization time, plausible starting seed candidates are selected using the Latin hypercube sampling method. The candidate parameter set giving the smallest deviation to the test data is used as a starting point for an iterative search for a calibration solution. The model calibration is conducted by minimizing the deviations between the measured steady-state multiharmonic frequency response data and the analytical counterparts that are calculated using the multiharmonic balance method. The resulting calibrated model's output corresponds well with the measured responses.

References

References
1.
Gondhalekar
,
A. C.
,
Petrov
,
E. P.
, and
Imregun
,
M.
,
2009
, “
Parameter Identification for Nonlinear Dynamic Systems Via Genetic Algorithm Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041002
.
2.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2001
, “
Proper Orthogonal Decomposition for Model Updating of Non-Linear Mechanical Systems
,”
Mech. Syst. Signal Process.
,
15
(
2
), pp.
31
34
.
3.
Mariani
,
S.
, and
Ghisi
,
A.
,
2007
, “
Unscented Kalman Filtering for Nonlinear Structural Dynamics
,”
Nonlinear Dyn.
,
49
(1), pp.
131
150
.
4.
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2005
, “
Generation of Accurate Finite Element Models of Nonlinear Systems–Application to an Aeroplane-Like Structure
,”
Nonlinear Dyn.
,
39
(
1
), pp.
129
142
.
5.
Meyer
,
S.
, and
Link
,
M.
,
2003
, “
Modelling and Updating of Local Non-Linearties Using Frequency Response Residuals
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
219
226
.
6.
Cameron
,
T.
, and
Griffin
,
J.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
7.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Non-Linear Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1593
1608
.
8.
Ferreira
,
J. V.
, and
Ewins
,
D. J.
,
1997
, “
Algebraic Nonlinear Impedance Equation Using Multi-Harmonic Describing Function
,”
15th International Modal Analysis Conference
, Orlando, FL, pp. 1595–1601.
9.
Ren
,
Y.
, and
Beards
,
C. F.
,
1994
, “
A New Receptance-Based Perturbative Multi-Harmonic Balance Method for the Calculation of the Steady State Response of Non-Linear Systems
,”
J. Sound Vib.
,
172
(
5
), pp.
593
604
.
10.
Isasa
,
I.
,
Hot
,
A.
,
Cogan
,
S.
, and
Sadoulet-Reboul
,
E.
,
2011
, “
Model Updating of Locally Non-Linear Systems Based on Multi-Harmonic Extended Constitutive Relation Error
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2413
2425
.
11.
Thouverez
,
F.
,
2003
, “
Presentation of the ECL Benchmark
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
195
202
.
12.
Chen
,
Y.
,
Yaghoubi
,
V.
,
Linderholt
,
A.
, and
Abrahamsson
,
T.
,
2016
, “
Informative Data for Model Calibration of Locally Nonlinear Structures Based on Multi-Harmonic Frequency Responses
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051023
.
13.
Allemang
,
R.
,
2002
, “
The Modal Assurance Criterion (MAC)—Twenty Years of Use and Abuse
,”
20th IMAC, Conference and Exposition on Structural Dynamics
, Los Angeles, CA, pp. 397–405.
14.
Walter
,
E.
, and
Pronzato
,
L.
,
1997
,
Identification of Parametric Models From Experimental Data
,
Springer
, Berlin.
15.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics: J. Stat. Phys. Chem. Eng.
,
21
(
2
), pp.
239
245
.
16.
Kerschen
,
G.
,
Lenaerts
,
V.
, and
Golinval
,
J.-C.
,
2003
, “
Identification of a Continuous Structure With a Geometrical Non-Linearity—Part I: Conditioned Reverse Path Method
,”
J. Sound Vib.
,
262
(
4
), pp.
889
906
.
17.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2003
, “
ECL Benchmark: Application of the Proper or Orthogonal Decomposition
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
237
242
.
18.
Sracic
,
M. W.
, and
Allen
,
M. S.
,
2014
, “
Identifying Parameters of Multi-Degree-of-Freedom Nonlinear Structural Dynamic Systems Using Linear Time Periodic Approximations
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
325
343
.
19.
Lundgren
,
J.
,
Ronnqvist
,
M.
, and
Varbrand
,
P.
,
2010
,
Optimization
, Professional Publishing, Amsterdam, The Netherlands.
20.
Abrahamsson
,
T.
, and
Kammer
,
D. C.
,
2015
, “
Finite Element Model. Calibration Using Frequency Responses With Damping Equalization
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
218
234
.
21.
MSC,
2014
, “
MSC Nastran Version 2014, Quick Reference Guide
,” MSC Software, Newport Beach, CA.
You do not currently have access to this content.