System identification of the sinusoidal steady-state response of the Phantom Omni using a local linear model revealed that friction has a non-negligible effect on the accuracy of a global linear model, particularly at low frequencies. Some of the obvious errors observed with the global linear model at low frequencies were (i) the response amplitude was lower; (ii) local linear model coefficients became physically impossible (e.g., negative) at low frequencies; and (iii) low frequency inputs resulted in a greater nonlinearity in the response compared to higher frequency inputs. While standard friction models such as Coulomb friction could be used to model the nonlinearity, there is a desire to create a friction model that is not only accurate for sinusoidal steady-state responses, but can also be generalized to any input response. One measure that is universally present in dynamical systems is energy, and in this paper the relationship between a generalized measure of energy and damping for modeling the effect of friction is developed. This paper introduces the “α-invariant” as a means of generalizing the friction behavior observed with sinusoidal steady-state responses to other waveforms. For periodic waveforms, the α-invariant is shown to be equivalent to the energy dissipated in each cycle, which demonstrates the physical significance of this quantity. The α-invariant nonlinear model formulation significantly outperforms the linear model for both sinusoidal steady state and step responses, demonstrating that this method accurately represents the physical mechanisms in the Phantom Omni. Overall, the α-invariant provides an efficient way of capturing nonlinear dynamics with a small number of parameters and experiments.

References

References
1.
Tahmasebi
,
A. M.
,
Taati
,
B.
,
Mobasser
,
F.
, and
Hashtrudi-Zaad
,
K.
,
2005
, “
Dynamic Parameter Identification and Analysis of a PHANToM TM Haptic Device
,” 2005
IEEE
Conference on Control Applications
, Aug. 28–31, pp.
1251
1256
.
2.
Taati
,
B.
,
Tahmasebi
,
A. M.
, and
Hashtrudi-Zaad
,
K.
,
2008
, “
Experimental Identification and Analysis of the Dynamics of a PHANToM Premium 1.5A Haptic Device
,”
Presence
,
17
(
4
), pp.
327
343
.
3.
Calanca
,
A.
,
Capisani
,
L. M.
,
Ferrara
,
A.
, and
Magnani
,
L.
,
2011
, “
MIMO Closed Loop Identification of an Industrial Robot
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1214
1224
.
4.
Marton
,
L.
, and
Lantos
,
B.
,
2011
, “
Control of Robotic Systems With Unknown Friction and Payload
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1534
1539
.
5.
Gautier
,
M.
,
Janot
,
A.
, and
Vandanjon
,
P. O.
,
2013
, “
A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
428
444
.
6.
Chen
,
Y.-Y.
,
Huang
,
P.-Y.
, and
Yen
,
J.-Y.
,
2002
, “
Frequency-Domain Identification Algorithms for Servo Systems With Friction
,”
IEEE Trans. Control Syst. Technol.
,
10
(
5
), pp.
654
665
.
7.
Hann
,
C. E.
,
Chase
,
J. G.
,
Ypma
,
M. F.
,
Elfring
,
J.
,
Nor
,
N. M.
,
Lawrence
,
P.
, and
Shaw
,
G. M.
,
2008
, “
The Impact of Parameter Identification Methods on Drug Therapy Control in an Intensive Care Unit
,”
Open Med. Inf. J.
,
2
(
1
), pp.
92
104
.
8.
Moorhead
,
K. T.
,
Paeme
,
S.
,
Chase
,
J. G.
,
Kolh
,
P.
,
Pierard
,
L.
,
Hann
,
C. E.
,
Dauby
,
P. C.
, and
Desaive
,
T.
,
2013
, “
A Simplified Model for Mitral Valve Dynamics
,”
Comput. Methods Programs Biomed.
,
109
(
2
), pp.
190
196
.
9.
Hann
,
C. E.
,
Snowdon
,
M.
,
Rao
,
A.
,
Winn
,
O.
,
Wongvanich
,
N.
, and
Chen
,
X.
,
2011
, “
Minimal Modelling Approach to Describe Turbulent Rocket Roll Dynamics in a Vertical Wind Tunnel
,”
Proc. Inst. Mech. Eng. Part G
,
226
(
9
), pp.
1042
1060
.
10.
Wongvanich
,
N.
,
2013
, “
Non Linear Electromechanical Cart Characterization Using Minimal Modeling Approach
,”
2013 Control Conference
(
ECC
), Zurich, Switzerland, July 17–19, pp.
2927
2932
.
11.
Gunn
,
C.
, and
Zhu
,
D.
,
2010
, “
Haptic Tele-Operation of Industrial Equipment
,”
APCHI-ERGOFUTURE 2010
, p.
6
.
12.
Okamura
,
A. M.
,
2004
, “
Methods for Haptic Feedback in Teleoperated Robot-Assisted Surgery
,”
Ind. Rob.
,
31
(
6
), pp.
499
508
.
13.
Ghanbari
,
A.
,
Abdi
,
H.
,
Horan
,
B.
,
Nahavandi
,
S.
,
Chen
,
X.
, and
Wang
,
W.
,
2010
, “
Haptic Guidance for Microrobotic Intracellular Injection
,”
3rd IEEE RAS & EMBS
, Sept. 26–29, pp. 162–167.
14.
Kim
,
S.-G.
, and
Sitti
,
M.
,
2006
, “
Task-Based and Stable Telenanomanipulation in a Nanoscale Virtual Environment
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
240
247
.
15.
Kim
,
S.-M.
,
2014
, “
Lumped Element Modeling of a Flexible Manipulator System
,”
IEEE/ASME Trans. Mech.
,
99
, pp.
1
8
.
16.
Sansanayuth
,
T.
,
Nilkhamhang
,
I.
, and
Tungpimolrat
,
K.
,
2012
, “
Teleoperation With Inverse Dynamics Control for PHANToM Omni Haptic Device
,”
SICE
Annual Conference 2012
, Aug. 20–23, pp.
2121
2126
.
17.
Mohammadi
,
A.
,
2011
, “
Disturbance Observer Design for Robotic and Telerobotic Systems
,”
Ph.D thesis
, University of Alberta, Edmonton, Alberta, Canada.
18.
Na
,
B.
,
Choi
,
H.
, and
Kong
,
K.
,
2014
, “
Design of a Direct-Driven Linear Actuator
,”
IEEE/ASME Trans. Mech.
,
99
, pp.
1
10
.
19.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.
20.
Rahmat
,
M.
,
Sunar
,
N. H.
,
Salim
,
S. N. S.
,
Abidin
,
M. S. Z.
,
Fauzi
,
A. A. M.
, and
Ismail
,
Z. H.
,
2011
, “
Review on Modeling and Controller Design
,”
Int. J. Smart Sensing Intell. Syst.
,
4
(
4
), pp.
630
661
.
21.
Berger
,
E.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.
22.
Van Geffen
,
V.
,
2009
, “
A Study of Friction Models and Friction Compensation
,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands,
DCT2009.118
.
23.
Osman
,
K.
,
Fauzdi
,
A.
,
Rahmat
,
M. F.
,
Mustafa
,
N.
,
Azman
,
M. A.
, and
Suzumori
,
K.
,
2012
, “
System Identification Model for an Intelligent Pneumatic Actuator (IPA) System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Oct. 7–12, pp.
628
633
.
24.
Boulet
,
B.
,
Daneshmend
,
L.
,
Hayward
,
V.
, and
Nemri
,
C.
,
2005
, “
System Identification and Modelling of a High Performance Hydraulic Actuator
,”
Lecture Notes in Control and Information Sciences
, G. Chatila and R. Hirzinger, eds., Springer Verlag, Montreal, Canada, pp. 503–520.
25.
Naerum
,
E.
,
Cornell
,
J.
, and
Elle
,
O. J.
,
2008
, “
Wavelet Networks for Estimation of Coupled Friction in Robotic Manipulators
,”
IEEE
International Conference on Robotics and Automation
, May 19–23, pp.
862
867
.
26.
Naerum
,
E.
,
Cornell
,
J.
, and
Elle
,
O. J.
,
2008
, “
Contact Force Estimation for Backdrivable Robotic Manipulators With Coupled Friction
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Sept. 22–26, pp.
22
26
.
27.
Lichtsinder
,
A.
, and
Gutman
,
P.
,
2013
, “
Quasi-Linear Analytical Approach to Stick Slip Friction in the Frequency Domain
,”
Int. J. Robust Nonlinear Control
,
24
(
17
), pp.
2891
2908
.
28.
Bellman
,
R.
,
Kagiwada
,
H.
, and
Kalaba
,
R.
,
1965
, “
Quasilinearization, System Identification and Prediction
,”
Int. J. Eng. Sci.
,
3
(
3
), pp.
327
334
.
You do not currently have access to this content.