Miniature wireless inertial measurement units (IMUs) hold great promise for measuring and analyzing multibody system dynamics. This relatively inexpensive technology enables noninvasive motion tracking in broad applications, including human motion analysis. This paper advances the use of an array of IMUs to estimate the joint reactions (forces and moments) in multibody systems via inverse dynamic modeling. In particular, this paper reports a benchmark experiment on a double-pendulum that reveals the accuracy of IMU-informed estimates of joint reactions. The estimated reactions are compared to those measured by high-precision miniature (6 degrees-of-freedom) load cells. Results from ten trials demonstrate that IMU-informed estimates of the three-dimensional reaction forces remain within 5.0% RMS of the load cell measurements and with correlation coefficients greater than 0.95 on average. Similarly, the IMU-informed estimates of the three-dimensional reaction moments remain within 5.9% RMS of the load cell measurements and with correlation coefficients greater than 0.88 on average. The sensitivity of these estimates to mass center location is discussed. Looking ahead, this benchmarking study supports the promising and broad use of this technology for estimating joint reactions in human motion applications.

References

References
1.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg.
,
89
(
4
), pp.
780
785
.
2.
Favre
,
J.
,
Erhart-Hledik
,
J. C.
,
Chehab
,
E. F.
, and
Andriacchi
,
T. P.
,
2016
, “
General Scheme to Reduce the Knee Adduction Moment by Modifying a Combination of Gait Variables
,”
J. Orthop. Res.
,
34
(
9
), pp.
1547
1556
.
3.
Winter
,
D. A.
,
1990
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
4.
Langenderfer
,
J. E.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2008
, “
An Efficient Probabilistic Methodology for Incorporating Uncertainty in Body Segment Parameters and Anatomical Landmarks in Joint Loadings Estimated From Inverse Dynamics
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
014502
.
5.
Davy
,
D. T.
, and
Audu
,
M. L.
,
1987
, “
A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait
,”
J. Biomech.
,
20
(
2
), pp.
187
201
.
6.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
,
2008
, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and An Application to Gait
,”
Gait Posture
,
27
(
4
), pp.
578
588
.
7.
van den Noort
,
J. C.
,
van der Esch
,
M.
,
Steultjens
,
M. P. M.
,
Dekker
,
J.
,
Schepers
,
H. M.
,
Veltink
,
P. H.
, and
Harlaar
,
J.
,
2012
, “
The Knee Adduction Moment Measured With an Instrumented Force Shoe in Patients With Knee Osteoarthritis
,”
J. Biomech.
,
45
(
2
), pp.
281
288
.
8.
Krüger
,
A.
,
McAlpine
,
P.
,
Borrani
,
F.
, and
Edelmann-Nusser
,
J.
,
2012
, “
Determination of Three-Dimensional Joint Loading Within the Lower Extremities in Snowboarding
,”
Proc. Inst. Mech. Eng. H
,
226
(
2
), pp.
170
175
.
9.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
,
2011
, “
Ambulatory Measurement of Ankle Kinetics for Clinical Applications
,”
J. Biomech.
,
44
(
15
), pp.
2712
2718
.
10.
Faber
,
G. S.
,
Kingma
,
I.
, and
van Dieën
,
J. H.
,
2010
, “
Bottom-Up Estimation of Joint Moments During Manual Lifting Using Orientation Sensors Instead of Position Sensors
,”
J. Biomech.
,
43
(
7
), pp.
1432
1436
.
11.
McGinnis
,
R. S.
, and
Perkins
,
N. C.
,
2012
, “
A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs
,”
Sensors
,
12
(
9
), pp.
11933
11945
.
12.
King
,
K.
,
Hough
,
J.
,
McGinnis
,
R.
, and
Perkins
,
N.
,
2012
, “
A New Technology for Resolving the Dynamics of a Swinging Bat
,”
Sports Eng.
,
15
(
1
), pp.
41
52
.
13.
King
,
K.
,
Perkins
,
N. C.
,
Churchill
,
H.
,
McGinnis
,
R.
,
Doss
,
R.
, and
Hickland
,
R.
,
2010
, “
Bowling Ball Dynamics Revealed by Miniature Wireless MEMS Inertial Measurement Unit
,”
Sports Eng.
,
13
(
2
), pp.
95
104
.
14.
McGinnis
,
R. S.
,
Hough
,
J.
, and
Perkins
,
N. C.
,
2013
, “
Benchmarking the Accuracy of Inertial Measurement Units for Estimating Joint Reactions
,”
ASME
Paper No. IMECE2013-63300.
15.
King
,
K. W.
,
2008
, “
The Design and Application of Wireless MEMS Inertial Measurement Units for the Measurement and Analysis of Golf Swings
,” Ph.D., University of Michigan, Ann Arbor, MI.
16.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill Book
,
New York
.
17.
Savage
,
P.
,
2000
,
Strapdown Analytics
,
Strapdown Associates
,
Maple Plain, MN
.
18.
Titterton
,
D. H.
, and
Weston
,
J. L.
,
2004
,
Strapdown Inertial Navigation Technology
,
Institution of Electrical Engineers
,
Stevenage, UK
.
19.
McGinnis
,
R.
,
Cain
,
S.
,
Davidson
,
S.
,
Vitali
,
R.
,
McLean
,
S.
, and
Perkins
,
N.
,
2014
, “
Validation of Complementary Filter Based IMU Data Fusion for Tracking Torso Angle and Rifle Orientation
,”
ASME
Paper No. IMECE2014-36909.
20.
McGinnis
,
R. S.
,
Cain
,
S. M.
,
Tao
,
S.
,
Whiteside
,
D.
,
Goulet
,
G. C.
,
Gardner
,
E. C.
,
Bedi
,
A.
, and
Perkins
,
N. C.
,
2015
, “
Accuracy of Femur Angles Estimated by IMUs During Clinical Procedures Used to Diagnose Femoroacetabular Impingement
,”
IEEE Trans. Biomed. Eng.
,
62
(
6
), pp.
1503
1513
.
21.
McGinnis
,
R. S.
, and
Perkins
,
N. C.
,
2013
, “
Inertial Sensor Based Method for Identifying Spherical Joint Center of Rotation
,”
J. Biomech.
,
46
(
14
), pp.
2546
2549
.
22.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2007
, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
782
793
.
23.
Hough
,
J.
,
McGinnis
,
R. S.
, and
Perkins
,
N. C.
,
2013
, “
Benchmarking the Accuracy of Inertial Measurement Units for Estimating Kinetic Energy
,”
ASME
Paper No. IMECE2013-63303.
24.
Holden
,
J. P.
, and
Stanhope
,
S. J.
,
1998
, “
The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments
,”
Gait Posture
,
7
(
1
), pp.
1
6
.
25.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
,
2006
, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
,
39
(
8
), pp.
1531
1536
.
26.
Cole
,
G.
,
Nigg
,
B.
,
van den Bogert
,
A.
, and
Gerritsen
,
K.
,
1996
, “
Lower Extremity Joint Loading During Impact in Running
,”
Clin. Biomech.
,
11
(
4
), pp.
181
193
.
27.
Pain
,
M. T. G.
, and
Challis
,
J. H.
,
2006
, “
The Influence of Soft Tissue Movement on Ground Reaction Forces, Joint Torques and Joint Reaction Forces in Drop Landings
,”
J. Biomech.
,
39
(
1
), pp.
119
124
.
You do not currently have access to this content.