In this work, a class of kicked systems perturbed with an irregular kicks pattern is studied and formation of a chaos in the senses of Devaney and Li–Yorke in the corresponding discretized system is investigated. Beside a discussion on chaotic stability, an example is presented. Then, the existence of a period three orbit of a 2D map which governs a class of dynamic problems on time scales is studied. As an application, a chaotic encryption scheme for a time-dependent plain text with the help of chaos induction in the sense of Li–Yorke is presented.

References

References
1.
Aulbach
,
B.
, and
Kieninger
,
B.
,
2001
, “
On Three Definitions of Chaos
,”
Nonlinear Dyn. Syst. Theory
,
1
(
1
), pp.
23
37
.
2.
Morel
,
C.
,
Vlad
,
R.
, and
Morel
,
J.-Y.
,
2008
, “
Anticontrol of Chaos Reduces Spectral Emissions
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041009
.
3.
Razminia
,
A.
, and
Baleanu
,
D.
,
2013
, “
Fractional Hyperchaotic Telecommunication Systems: A New Paradigm
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031012
.
4.
Feng
,
C.
,
Cai
,
L.
,
Kang
,
Q.
,
Wang
,
S.
, and
Zhang
,
H.
,
2015
, “
Novel Hyperchaotic System and Its Circuit Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061012
.
5.
Behnia
,
S.
,
Akhshani
,
A.
,
Ahadpour
,
S.
,
Mahmodi
,
H.
, and
Akhavan
,
A.
,
2007
, “
A Fast Chaotic Encryption Scheme Based on Piecewise Nonlinear Chaotic Maps
,”
Phys. Lett. A
,
366
(4–5), pp.
391
396
.
6.
Zaslavsky
,
G. M.
,
2005
,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
, Oxford, UK.
7.
Abdullaev
,
S. S.
,
2006
,
Construction of Mappings for Hamiltonian Systems and Their Applications
,
Springer
, Berlin.
8.
Baptista
,
M. O. S.
, and
Clades
,
I. L.
,
1996
, “
Dynamics of the Kicked Logistic Map
,”
Chaos
, Solitons Fractals,
7
(
3
), pp.
326
336
.
9.
Schuster
,
H. G.
, and
Just
,
W.
,
2005
,
Deterministic Chaos, An Introduction
,
WILEY-VCH Verlag GmbH & Co. KGaA
, Weinheim, Germany.
10.
Zheng
,
Y.
, and
Kobe
,
D. H.
,
2005
, “
Numerical Solution of Classical Kicked Rotor and Local Lyapunov Exponents
,”
Phys. Lett. A
,
334
(
4
), pp.
306
311
.
11.
Zheng
,
Y.
, and
Kobe
,
D. H.
,
2006
, “
Anomalous Momentum Diffusion in the Classical Kicked Rotor
,”
Chaos, Solitons Fractals
,
28
(
2
), pp.
395
402
.
12.
Edelman
,
M.
, and
Tarasov
,
V. E.
,
2009
, “
Fractional Standard Map
,”
Phys. Lett. A
,
374
(
2
), pp.
279
285
.
13.
Wu
,
G. C.
,
Baleanu
,
D.
, and
Zeng
,
S. D.
,
2014
, “
Discrete Chaos in Fractional Sine and Standard Maps
,”
Phys. Lett. A
,
378
(5–6), pp.
484
487
.
14.
Agarwal
,
R.
,
Bohner
,
M.
,
O'Regan
,
D.
, and
Peterson
,
A.
,
2002
, “
Dynamic Equations on Time Scales: A Survey
,”
J. Comput. Appl. Math.
,
141
(1–2), pp.
1
26
.
15.
Bohner
,
M.
, and
Peterson
,
A.
,
2001
,
Dynamic Equations on Time Scales: An Introduction With Applications
,
Springer
, Heidelberg, Germany.
16.
Tarasov
,
V. E.
,
2010
,
Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles Fields and Media
,
Springer Verlag
, Heidelberg, Germany.
17.
Devaney
,
R. L.
,
1989
,
An Introduction to Chaotic Dynamical Systems
,
Addison Wesley Publication
, Boston, MA.
18.
Banks
,
J.
,
Brooks
,
J.
,
Cairns
,
G.
,
Davis
,
G.
, and
Stacey
,
R.
,
1992
, “
On Devaney's Definition of Chaos
,”
Am. Math. Mon.
,
99
(
4
), pp.
332
334
.
19.
Li
,
T. Y.
, and
Yorke
,
J. A.
,
1975
, “
Period Three Implies Chaos
,”
Am. Math. Mon.
,
82
(
10
), pp.
985
992
.
20.
Huang
,
W.
, and
Ye
,
X.
,
2002
, “
Devaneys Chaos or 2-Scattering Implies LiYorkes Chaos
,”
Topol. Its Appl.
,
117
(
3
), pp.
259
272
.
21.
Li
,
J.
, and
Ye
,
X.
,
2016
, “
Recent Development of Chaos Theory in Topological Dynamics
,”
Acta. Math. Sin.-English Ser.
,
32
(1), pp. 83–114.
22.
Shi
,
Y.
, and
Chen
,
G.
,
2004
, “
Chaos of Discrete Dynamical Systems in Complete Metric Spaces
,”
Chaos, Solitons Fractals
,
22
(
3
), pp.
555
571
.
23.
Shi
,
Y.
, and
Chen
,
G.
,
2005
, “
Discrete Chaos in Banach Spaces
,”
Sci. China, Ser. A: Math.
,
48
(
2
), pp.
222
238
.
24.
Ostrowski
,
A.
,
1938
, “
Ü ber die Absolutabweichung einer differentiebaren Funcktion von ihrem Integralmittelwert
,”
Commentarii Mathematici Helvetici
,
10
(1937–1938), pp.
226
227
.
You do not currently have access to this content.