This study deals with the determination of Lagrangians, first integrals, and integrating factors of the modified Emden equation by using Jacobi and Prelle–Singer methods based on the Lie symmetries and λ-symmetries. It is shown that the Jacobi method enables us to obtain Jacobi last multipliers by means of the Lie symmetries of the equation. Additionally, via the Lie symmetries of modified Emden equation, we analyze some mathematical connections between λ-symmetries and Prelle–Singer method. New and nontrivial Lagrangian forms, conservation laws, and exact solutions of the equation are presented and discussed.
Issue Section:
Research Papers
Keywords:
Computational mechanics
References
1.
Bluman
, G. W.
, and Kumei
, S.
, 1989
, Symmetries and Differential Equations
, Springer-Verlag
, New York
.2.
Ovsiannikov
, L. V.
, 1978
, Group Analysis of Differential Equations
, Nauka
, Moscow, Russia
.3.
Ibragimov
, N. H.
, ed., 1994
, CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws
, CRC Press, Boca Raton, FL.4.
Olver
, P. J.
, 1986
, Applications of Lie Groups to Differential Equations
, Springer-Verlag
, New York
.5.
Muriel
, C.
, and Romero
, J. L.
, 2001
, “New Methods of Reduction for Ordinary Differential Equations
,” IMA J. Appl. Math.
, 66
(2
), pp. 111
–125
.6.
Muriel
, C.
, and Romero
, J. L.
, 2009
, “First Integrals, Integrating Factors and λ-Symmetries of Second Order Differential Equations
,” J. Phys. A: Math. Theor.
, 42
, p. 365207
.7.
Muriel
, C.
, and Romero
, J. L.
, 2008
, “Integrating Factors and λ-Symmetries
,” J. Nonlinear Math. Phys.
, 15
(3
), pp. 300
–309
.8.
Muriel
, C.
, and Romero
, J. L.
, 2012
, “Nonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations
,” SIGMA
8
, p. 106
.9.
Polat
, G. G.
, and Özer
, T.
, 2016
, “On Analysis of Nonlinear Dynamical Systems Via Methods Connected With λ-Symmetry
,” Nonlinear Dyn.
, 85
(3
), pp. 1571
–1595
.10.
Jacobi
, C. G. J.
, 1844
, “Sul principio dell'ultimo moltiplicatore, e suo come nuovo principio generale di meccanica
,” G. Arcadico Sci. Lett. Arti
, 99
, pp. 129
–146
.11.
Jacobi
, C. G. J.
, 1844
, “Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi
,” J. Reine Angrew. Math.
, 27
, pp. 199
–268
.12.
Jacobi
, C. G. J.
, 1845
, “Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi
,” J. Reine Angrew. Math.
, 29
, pp. 213
–279
; 333–376.13.
Lie
, S.
, 1874
, “Veralgemeinerung und neue Verwerthung der Jacobischen Multiplikatortheorie
,” Christiania Forh.
, pp. 255
–274
.14.
Nucci
, M. C.
, 2005
, “Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship
,” J. Nonlinear Math. Phys.
, 12
(2
), pp. 284
–304
.15.
Nucci
, M. C.
, and Leach
, P. G. L.
, 2007
, “Lagrangians Galore
,” J. Math. Phys.
, 48
(12
), p. 123510
.16.
Nucci
, M. C.
, and Tamizhmani
, K. M.
, 2010
, “Using an Old Method of Jacobi to Derive Lagrangians: A Nonlinear Dynamical System With Variable Coefficients
,” Il Nuovo Cimento B, 125
(3
), pp. 255
–269
.17.
Nucci
, M. C.
, and Leach
, P. G. L.
, 2009
, “An Old Method of Jacobi to Find Lagrangians
,” J. Nonlinear Math. Phys.
, 16
(4
), pp. 431
–441
.18.
Nucci
, M. C.
, 2009
, “Seeking (and Finding) Lagrangians
,” Theor. Math. Phys.
, 160
(1
), pp. 1014
–1021
.19.
Yaşar
, E.
, and Reis
, M.
, 2010
, “Application of Jacobi Method and Integrating Factors to a Class of Painlevé–Gambier Equations
,” J. Phys. A: Math. Theor.
, 43
(29
), p. 295202
.20.
Chandrasekar
, V. K.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2005
, “Extended Prelle–Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations
,” J. Math. Phys.
, 12
(Suppl. 1
), pp. 184
–201
.21.
Musielak
, Z. E.
, 2008
, “Standard and Non-Standard Lagrangians for Dissipative Dynamical Systems With Variable Coefficients
,” J. Phys. A: Math. Theor.
, 41
(38
), p. 055205
.22.
Cieśliński
, J. L.
, and Nikiciuk
, T.
, 2010
, “A Direct Approach to the Construction of Standard and Non-Standard Lagrangians for Dissipative-Like Dynamical Systems With Variable Coefficients
,” J. Phys. A: Math. Theor.
, 43
(17
), p. 175205
.23.
Carinena
, J. F.
, Ranada
, M. F.
, and Santander
, M.
, 2005
, “Lagrangian Formalism for Nonlinear Second-Order Riccati Systems: One-Dimensional Integrability and Two-dimensional Superintegrability
,” J. Math. Phys.
, 46
(6
), p. 062703
.24.
Chandrasekar
, V. K.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2005
, “On the Complete Integrability and Linearization of Certain Second Order Nonlinear Ordinary Differential Equations
,” Proc. R. Soc. London, Ser. A
, 461
(2060
), pp. 2451
–2476
.25.
Duarte
, L. G. S.
, Duarte
, S. E. S.
, and Moreira
, I. C.
, 1987
, “One-Dimensional Equations With the Maximum Number of Symmetry Generators
,” J. Phys. A: Math. Gen.
, 20
(11
), pp. L701
–L704
.26.
Leach
, P. G. L.
, Feix
, M. R.
, and Bouquet
, S.
, 1988
, “Analysis and Solution of a Nonlinear Second-Order Differential Equation Through Rescaling and Through a Dynamical Point of View
,” J. Math. Phys.
, 29
(12
), pp. 2563
–2569
.27.
Lemmer
, R. L.
, and Leach
, P. G. L.
, 1993
, “The Painleve Test, Hidden Symmetries and the Equation y″ + yy′ + Ky3 = 0
,” J. Phys. A: Math. Gen.
, 26
(19
), pp. 5017
–5024
.28.
Mahomed
, F. M.
, 2007
, “Symmetry Group Classification of Ordinary Differential Equations: Survey of Some Results
,” Math. Methods Appl. Sci.
, 30
(16
), pp. 1995
–2012
.29.
Golubev
, V. V.
, 1950
, Lectures on Analytical Theory of Differential Equations
, Gostekhizdat
, Moscow, Russia
.30.
Chisholm
, J. S. R.
, and Common
, A. K.
, 1987
, “A Class of Second-Order Differential Equations and Related First-Order Systems
,” J. Phys. A: Math. Gen.
, 20
(16
), pp. 5459
–5472
.31.
Moreira
, I. C.
, 1984
, “Lie Symmetries for the Reduced Three-Wave
,” Hadronic J.
, 7
, p. 475
.32.
Leach
, P. G. L.
, 1985
, “First Integrals for the Modified Emden Equation
,” J. Phys.
, 26
(10
), p. 2510
.33.
Chandrasekhar
, S.
, 1957
, An Introduction to the Study of Stellar Structure
, Dover
, New York
.34.
Dixon
, J. M.
, and Tuszynski
, J. A.
, 1990
, “Solutions of a Generalized Emden Equation and Their Physical Significance
,” Phys. Rev. A
, 41
(8
), pp. 4166
–4173
.35.
McVittie
, G. C.
, 1933
, “The Mass-Particle in an Expanding Universe
,” Mon. Not. R. Astron. Soc.
, 93
, pp. 325
–339
.36.
Erwin
, V. J.
, Ames
, W. F.
, and Adams
, E.
, 1984
, “Wave Phenomenon: Modern Theory and Applications
,” Wave Phenomenon: Modern Theory and Applications
, C.
Rogers
, and J. B.
Moodie
, eds., North-Holland
, Amsterdam, The Netherlands
.37.
Pandey
, S. N.
, Bindu
, P. S.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2009
, “A Group Theoretical Identification of Integrable Equations in the Liénard-Type Equation —II: Equations Having Maximal Lie Point Symmetries
,” J. Math. Phys.
, 50
(10
), p. 102701
.38.
Chandrasekar
, V. K.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2007
, “On the General Solution for the Modified Emden-Type Equation
,” J. Phys. A: Math. Theor.
, 40
(18
), pp. 4717
–4727
.39.
Iacono
, R.
, 2008
, “Comment ‘On the General Solution for the Modified Emden-Type Equation ’
,” J. Phys. A: Math. Theor.
, 41
(6
), p. 068001
.40.
Chandrasekar
, V. K.
, Pandey
, S. N.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2005
, “Application of Extended Prelle–Singer Procedure to the Generalized Modified Emden Type Equation
,” Chaos Solutions Fractals
, 26
(5
), pp. 1399
–1406
.41.
Mohanasubha
, R.
, Chandrasekar
, V. K.
, Senthilvelan
, M.
, and Lakshmanan
, M.
, 2014
, “Interplay of Symmetries, Null Forms, Darbou Polynomials, Integrating Factors and Jacobi Multipliers in Integrable Second-Order Differential Equations
,” Proc. R. Soc. A
, 470
(2163
).42.
Bhuvaneswari
, A.
, Kraenkel
, R.
, and Senthilvelan
, M.
, 2012
, “Application of the Lambda-Symmetries Approach and Time Independent Integral of the Modified Emden Equation
,” Nonlinear Anal.: Real World Appl.
, 13
(2
), pp. 1102
–1114
.Copyright © 2017 by ASME
You do not currently have access to this content.