This study deals with the determination of Lagrangians, first integrals, and integrating factors of the modified Emden equation by using Jacobi and Prelle–Singer methods based on the Lie symmetries and λ-symmetries. It is shown that the Jacobi method enables us to obtain Jacobi last multipliers by means of the Lie symmetries of the equation. Additionally, via the Lie symmetries of modified Emden equation, we analyze some mathematical connections between λ-symmetries and Prelle–Singer method. New and nontrivial Lagrangian forms, conservation laws, and exact solutions of the equation are presented and discussed.

References

1.
Bluman
,
G. W.
, and
Kumei
,
S.
,
1989
,
Symmetries and Differential Equations
,
Springer-Verlag
,
New York
.
2.
Ovsiannikov
,
L. V.
,
1978
,
Group Analysis of Differential Equations
,
Nauka
,
Moscow, Russia
.
3.
Ibragimov
,
N. H.
, ed.,
1994
,
CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws
, CRC Press, Boca Raton, FL.
4.
Olver
,
P. J.
,
1986
,
Applications of Lie Groups to Differential Equations
,
Springer-Verlag
,
New York
.
5.
Muriel
,
C.
, and
Romero
,
J. L.
,
2001
, “
New Methods of Reduction for Ordinary Differential Equations
,”
IMA J. Appl. Math.
,
66
(
2
), pp.
111
125
.
6.
Muriel
,
C.
, and
Romero
,
J. L.
,
2009
, “
First Integrals, Integrating Factors and λ-Symmetries of Second Order Differential Equations
,”
J. Phys. A: Math. Theor.
,
42
, p.
365207
.
7.
Muriel
,
C.
, and
Romero
,
J. L.
,
2008
, “
Integrating Factors and λ-Symmetries
,”
J. Nonlinear Math. Phys.
,
15
(
3
), pp.
300
309
.
8.
Muriel
,
C.
, and
Romero
,
J. L.
,
2012
, “
Nonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations
,”
SIGMA
8
, p.
106
.
9.
Polat
,
G. G.
, and
Özer
,
T.
,
2016
, “
On Analysis of Nonlinear Dynamical Systems Via Methods Connected With λ-Symmetry
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1571
1595
.
10.
Jacobi
,
C. G. J.
,
1844
, “
Sul principio dell'ultimo moltiplicatore, e suo come nuovo principio generale di meccanica
,”
G. Arcadico Sci. Lett. Arti
,
99
, pp.
129
146
.
11.
Jacobi
,
C. G. J.
,
1844
, “
Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi
,”
J. Reine Angrew. Math.
,
27
, pp.
199
268
.
12.
Jacobi
,
C. G. J.
,
1845
, “
Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi
,”
J. Reine Angrew. Math.
,
29
, pp.
213
279
; 333–376.
13.
Lie
,
S.
,
1874
, “
Veralgemeinerung und neue Verwerthung der Jacobischen Multiplikatortheorie
,”
Christiania Forh.
, pp.
255
274
.
14.
Nucci
,
M. C.
,
2005
, “
Jacobi Last Multiplier and Lie Symmetries: A Novel Application of an Old Relationship
,”
J. Nonlinear Math. Phys.
,
12
(
2
), pp.
284
304
.
15.
Nucci
,
M. C.
, and
Leach
,
P. G. L.
,
2007
, “
Lagrangians Galore
,”
J. Math. Phys.
,
48
(
12
), p.
123510
.
16.
Nucci
,
M. C.
, and
Tamizhmani
,
K. M.
,
2010
, “
Using an Old Method of Jacobi to Derive Lagrangians: A Nonlinear Dynamical System With Variable Coefficients
,” Il Nuovo Cimento B,
125
(
3
), pp.
255
269
.
17.
Nucci
,
M. C.
, and
Leach
,
P. G. L.
,
2009
, “
An Old Method of Jacobi to Find Lagrangians
,”
J. Nonlinear Math. Phys.
,
16
(
4
), pp.
431
441
.
18.
Nucci
,
M. C.
,
2009
, “
Seeking (and Finding) Lagrangians
,”
Theor. Math. Phys.
,
160
(
1
), pp.
1014
1021
.
19.
Yaşar
,
E.
, and
Reis
,
M.
,
2010
, “
Application of Jacobi Method and Integrating Factors to a Class of Painlevé–Gambier Equations
,”
J. Phys. A: Math. Theor.
,
43
(
29
), p.
295202
.
20.
Chandrasekar
,
V. K.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2005
, “
Extended Prelle–Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations
,”
J. Math. Phys.
,
12
(
Suppl. 1
), pp.
184
201
.
21.
Musielak
,
Z. E.
,
2008
, “
Standard and Non-Standard Lagrangians for Dissipative Dynamical Systems With Variable Coefficients
,”
J. Phys. A: Math. Theor.
,
41
(
38
), p.
055205
.
22.
Cieśliński
,
J. L.
, and
Nikiciuk
,
T.
,
2010
, “
A Direct Approach to the Construction of Standard and Non-Standard Lagrangians for Dissipative-Like Dynamical Systems With Variable Coefficients
,”
J. Phys. A: Math. Theor.
,
43
(
17
), p.
175205
.
23.
Carinena
,
J. F.
,
Ranada
,
M. F.
, and
Santander
,
M.
,
2005
, “
Lagrangian Formalism for Nonlinear Second-Order Riccati Systems: One-Dimensional Integrability and Two-dimensional Superintegrability
,”
J. Math. Phys.
,
46
(
6
), p.
062703
.
24.
Chandrasekar
,
V. K.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2005
, “
On the Complete Integrability and Linearization of Certain Second Order Nonlinear Ordinary Differential Equations
,”
Proc. R. Soc. London, Ser. A
,
461
(
2060
), pp.
2451
2476
.
25.
Duarte
,
L. G. S.
,
Duarte
,
S. E. S.
, and
Moreira
,
I. C.
,
1987
, “
One-Dimensional Equations With the Maximum Number of Symmetry Generators
,”
J. Phys. A: Math. Gen.
,
20
(
11
), pp.
L701
L704
.
26.
Leach
,
P. G. L.
,
Feix
,
M. R.
, and
Bouquet
,
S.
,
1988
, “
Analysis and Solution of a Nonlinear Second-Order Differential Equation Through Rescaling and Through a Dynamical Point of View
,”
J. Math. Phys.
,
29
(
12
), pp.
2563
2569
.
27.
Lemmer
,
R. L.
, and
Leach
,
P. G. L.
,
1993
, “
The Painleve Test, Hidden Symmetries and the Equation y″ + yy′ + Ky3 = 0
,”
J. Phys. A: Math. Gen.
,
26
(
19
), pp.
5017
5024
.
28.
Mahomed
,
F. M.
,
2007
, “
Symmetry Group Classification of Ordinary Differential Equations: Survey of Some Results
,”
Math. Methods Appl. Sci.
,
30
(
16
), pp.
1995
2012
.
29.
Golubev
,
V. V.
,
1950
,
Lectures on Analytical Theory of Differential Equations
,
Gostekhizdat
,
Moscow, Russia
.
30.
Chisholm
,
J. S. R.
, and
Common
,
A. K.
,
1987
, “
A Class of Second-Order Differential Equations and Related First-Order Systems
,”
J. Phys. A: Math. Gen.
,
20
(
16
), pp.
5459
5472
.
31.
Moreira
,
I. C.
,
1984
, “
Lie Symmetries for the Reduced Three-Wave
,”
Hadronic J.
,
7
, p.
475
.
32.
Leach
,
P. G. L.
,
1985
, “
First Integrals for the Modified Emden Equation q̈+α(t)q̇+qn=0
,”
J. Phys.
,
26
(
10
), p.
2510
.
33.
Chandrasekhar
,
S.
,
1957
,
An Introduction to the Study of Stellar Structure
,
Dover
,
New York
.
34.
Dixon
,
J. M.
, and
Tuszynski
,
J. A.
,
1990
, “
Solutions of a Generalized Emden Equation and Their Physical Significance
,”
Phys. Rev. A
,
41
(
8
), pp.
4166
4173
.
35.
McVittie
,
G. C.
,
1933
, “
The Mass-Particle in an Expanding Universe
,”
Mon. Not. R. Astron. Soc.
,
93
, pp.
325
339
.
36.
Erwin
,
V. J.
,
Ames
,
W. F.
, and
Adams
,
E.
,
1984
, “
Wave Phenomenon: Modern Theory and Applications
,”
Wave Phenomenon: Modern Theory and Applications
,
C.
Rogers
, and
J. B.
Moodie
, eds.,
North-Holland
,
Amsterdam, The Netherlands
.
37.
Pandey
,
S. N.
,
Bindu
,
P. S.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2009
, “
A Group Theoretical Identification of Integrable Equations in the Liénard-Type Equation ẍ+f(x)ẋ+g(x)=0—II: Equations Having Maximal Lie Point Symmetries
,”
J. Math. Phys.
,
50
(
10
), p.
102701
.
38.
Chandrasekar
,
V. K.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2007
, “
On the General Solution for the Modified Emden-Type Equation ẍ+αxẋ+βx3=0
,”
J. Phys. A: Math. Theor.
,
40
(
18
), pp.
4717
4727
.
39.
Iacono
,
R.
,
2008
, “
Comment ‘On the General Solution for the Modified Emden-Type Equation ẍ+αxẋ+βx3=0
,”
J. Phys. A: Math. Theor.
,
41
(
6
), p.
068001
.
40.
Chandrasekar
,
V. K.
,
Pandey
,
S. N.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2005
, “
Application of Extended Prelle–Singer Procedure to the Generalized Modified Emden Type Equation
,”
Chaos Solutions Fractals
,
26
(
5
), pp.
1399
1406
.
41.
Mohanasubha
,
R.
,
Chandrasekar
,
V. K.
,
Senthilvelan
,
M.
, and
Lakshmanan
,
M.
,
2014
, “
Interplay of Symmetries, Null Forms, Darbou Polynomials, Integrating Factors and Jacobi Multipliers in Integrable Second-Order Differential Equations
,”
Proc. R. Soc. A
,
470
(
2163
).
42.
Bhuvaneswari
,
A.
,
Kraenkel
,
R.
, and
Senthilvelan
,
M.
,
2012
, “
Application of the Lambda-Symmetries Approach and Time Independent Integral of the Modified Emden Equation
,”
Nonlinear Anal.: Real World Appl.
,
13
(
2
), pp.
1102
1114
.
You do not currently have access to this content.