This paper deals with a newly born fractional derivative and integral on time scales. A chain rule is derived, and the given indefinite integral is being discussed. Also, an application to the traffic flow problem with a fractional Burger's equation is presented.

References

References
1.
Chen
,
W.
,
2006
, “
Time-Space Fabric Underlying Anomalous Diffusion
,”
Chaos, Solitons Fractals
,
28
(
4
), pp.
923
929
.
2.
Hilger
,
S.
,
1990
, “
Analysis on Measure Chain—A Unified Approach to Discrete and Continuous Calculus
,”
Results Math.
,
18
(1–2), pp.
18
56
.
3.
Hilger
,
S.
,
1997
, “
Differential and Difference Calculus-Unified
,”
Theory Methods Appl.
,
30
(
5
), pp.
2683
2694
.
4.
Benkhettou
,
N.
,
Brito da Cruz
,
A. M. C.
, and
Torres
,
D. F. M.
,
2015
, “
A Fractional Calculus on Arbitrary Time Scales: Fractional Differentiation and Fractional Integration
,”
Signal Process.
,
107
, pp.
230
237
.
5.
Buslaev
,
A. P.
,
Gasnikov
,
A. V.
, and
Yashina
,
M. V.
,
2012
, “
Selected Mathematical Problems of Traffic Flow Theory
,”
Int. J. Comput. Math.
,
89
(
3
), pp.
409
432
.
6.
Gelfand
, I
. M.
,
1959
, “
Some Problems in the Theory of Quasilinear Equations
,”
UMN
,
14
(
2
), pp.
87
158
(translation).
7.
Haight
,
F. A.
,
1963
,
Mathematical Theories of Traffic Flow
,
Academic Press
,
New York
.
8.
Nagatani
,
T.
,
Emmerich
,
H.
, and
Nakanish
,
K.
,
1998
, “
Burger's Equation for Kinetic Clustering in Tracow
,”
Physica A
,
255
(1–2), pp.
158
162
.
9.
Rothery
,
R. W.
,
1992
, “
Car Following Models
,” (Transportation Research Board), Vol.
165
,
N.
Gartner
,
C. J.
Messer
, and
A. K.
Rathi
, eds.,
U.S. Department of Transportation
,
Washington, DC
, pp.
1
41
.
10.
Bohner
,
M.
, and
Peterson
,
A.
,
2001
,
Dynamic Equations on Time Scales
,
Birkhäuser
, Boston, MA.
11.
Hallenbeck
,
M.
,
Rice
,
M.
,
Smith
,
B.
,
Cornell-Martinez
,
C.
, and
Wilkinson
,
J.
,
1997
, “
Vehicle Volume Distributions by Classification
,” Report No. FHWA-PL-97-025.
You do not currently have access to this content.