This paper addresses the design of a robust fractional-order dynamic output feedback sliding mode controller (FDOF-SMC) for a general class of uncertain fractional systems subject to saturation element. The control law is composed of two components, one linear and one nonlinear. The linear component corresponds to the fractional-order dynamics of the FDOF-SMC, while the nonlinear component is associated with the switching control algorithm. The closed-loop system exhibits asymptotical stability and the system states approach the sliding surface in a finite time. In order to design the controller, a linear matrix inequality (LMI)-based procedure is also derived. Simulation results demonstrate the feasibility of the FDOF-SMC strategy.

References

References
1.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
,
2007
,
Advances in Fractional Calculus Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Berlin
.
2.
Das
,
S.
, “
Fractional Function Calculus
,
2011
,
Springer-Verlag
,
Berlin
.
3.
Tenreiro Machado
,
J. A.
,
Galhano
,
A. M. S. F.
, and
Trujillo
,
J. J.
,
2014
, “
On Development of Fractional Calculus During the Last Fifty Years
,”
Scientometrics
,
98
(
1
), pp.
577
582
.
4.
Valério
,
D.
,
Tenreiro Machado
,
J. A.
, and
Kiryakova
,
V.
,
2014
, “
Some Pioneers of the Applications of Fractional Calculus
,”
Fractional Calculus Appl. Anal.
,
17
(
2
), pp.
552
578
.
5.
Valério
,
D.
,
Trujillo
,
J.
,
Rivero
,
M.
,
Tenreiro Machado
,
J. A.
, and
Baleanu
,
D.
,
2013
, “
Fractional Calculus: A Survey of Useful Formulas
,”
Eur. Phys. J. Spec. Top.
,
222
(
8
), pp.
1827
1846
.
6.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
7.
A. K.
Golmankhaneh
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2013
, “
The Proposed Modified Liu System With Fractional Order
,”
Adv. Math. Phys.
,
2013
, p.
186037
.
8.
Wu
,
G. C.
, and
Baleanu
,
D.
,
2014
, “
Chaos Synchronization of the Discrete Fractional Logistic Map
,”
Signal Process.
,
102
, pp.
96
99
.
9.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
10.
Monje
,
C. A.
,
Chen
,
Y.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls Fundamentals and Applications
,
Springer
,
Berlin
.
11.
Delavari
,
H.
,
Baleanu
,
D.
, and
Sadati
,
J.
,
2012
, “
Stability Analysis of Caputo Fractional-Order Nonlinear System Revisited
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2433
2439
.
12.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
13.
Rivero
,
M.
,
Rogosin
,
S. V.
,
Tenreiro Machado
,
J. A.
, and
Trujillo
,
J. J.
, “
Stability of Fractional Order Systems
,”
Math. Probl. Eng.
,
2013
, p.
356215
.
14.
Wu
,
G. C.
,
Baleanu
,
D.
,
Xie
,
H. P.
, and
Chen
,
F. L.
,
2016
, “
Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Conditions
,”
Phys. A
,
460
, pp.
374
383
.
15.
Duarte-Mermoud
,
M. A.
,
Aguila-Camacho
,
N. J.
,
Gallegos
,
A.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
650
659
.
16.
Razminia
,
A.
,
Baleanu
,
D.
, and
Johari Majd
,
V.
,
2013
, “
Conditional Optimization Problems: Fractional Order Case
,”
J. Optim. Theory Appl.
,
156
(
1
), pp.
45
55
.
17.
Tenreiro Machado
,
J. A.
,
2010
, “
Optimal Tuning of Fractional Controllers Using Genetic Algorithms
,”
Nonlinear Dyn.
,
62
(
1
), pp.
447
452
.
18.
Charef
,
A.
,
Assabaa
,
M.
,
Ladaci
,
S.
, and
Loiseau
,
J. J.
,
2013
, “
Fractional Order Adaptive Controller for Stabilised Systems Via High-Gain Feedback
,”
IET Control Theory Appl.
,
7
(
6
), pp.
822
828
.
19.
Ladaci
,
S.
, and
Charef
,
A.
,
2006
, “
On Fractional Adaptive Control
,”
Nonlinear Dyn.
,
43
(
4
), pp.
365
378
.
20.
Tenreiro Machado
,
J. A.
,
2012
, “
The Effect of Fractional Order in Variable Structure Control
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3340
3350
.
21.
Efe
,
M.
,
2012
, “
Application of Backstepping Control Technique to Fractional Order Dynamic Systems
,”
Fractional Dynamics and Control
,
Springer
,
New York, NY
, pp.
33
47
.
22.
Tenreiro Machado
,
J. A.
,
1997
, “
Analysis and Design of Fractional-Order Digital Control Systems
,”
Syst. Anal. Model. Simul.
,
27
(
2–3
), pp.
107
122
.http://dl.acm.org/citation.cfm?id=255030.255034
23.
Liao
,
Z.
,
Peng
,
C.
,
Li
,
W.
, and
Wang
,
Y.
,
2011
, “
Robust Stability Analysis for a Class of Fractional Order Systems With Uncertain Parameters
,”
J. Franklin Inst.
,
348
(
6
), pp.
1101
1113
.
24.
Lu
,
J. G.
, and
Chen
,
G. R.
,
2009
, “
Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1294
1299
.
25.
Lu
,
J. G.
, and
Chen
,
Y. Q.
, 2010, “
Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: the 0<α<1 Case
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
152
158
.
26.
Chevrie
,
M.
,
Sabatier
,
J.
,
Farges
,
C.
, and
Malti
,
R.
,
2015
, “
H2 Norm of a Class of Fractional Transfer Functions Suited for Modeling Diffusive Phenomena
,”
American Control Conference
, Chicago, IL, pp.
2199
2204
.
27.
Yin
,
C.
,
Chen
,
Y. Q.
, and
Zhong
,
S. M.
,
2014
, “
Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems
,”
Automatica
,
50
(
12
), pp.
3173
3181
.
28.
Binazadeh
,
T.
, and
Shafiei
,
M. H.
,
2013
, “
Output Tracking of Uncertain Fractional-Order Nonlinear Systems Via a Novel Fractional-Order Sliding Mode Approach
,”
Mechatronics
,
23
(
7
), pp.
888
892
.
29.
Bettayeb
,
M.
, and
Djennoune
,
S.
,
2016
, “
Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation
,”
Nonlinear Dyn.
,
84
(
2
), pp.
593
605
.
30.
Xu
,
Y.
,
Wang
,
H.
,
Liu
,
D.
, and
Huang
,
H.
,
2015
, “
Sliding Mode Control of a Class of Fractional Chaotic Systems in the Presence of Parameter Perturbations
,”
J. Vib. Control
,
21
(
3
), pp.
435
448
.
31.
Bijnan
,
B.
, and
Kamal
,
S.
,
2015
,
Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
,
Springer
,
Berlin
.
32.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2014
, “
Fractional Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional Nonlinear Systems
,”
Asian J. Control
,
16
(
2
), pp.
489
497
.
33.
Faieghi
,
M. R.
,
Delavari
,
H.
, and
Baleanu
,
D.
,
2013
, “
A Note on Stability of Sliding Mode Dynamics in Suppression of Fractional-Order Chaotic Systems
,”
Comput. Math. Appl.
,
66
(
5
), pp.
832
837
.
34.
Lim
,
Y. H.
,
Oh
,
K. K. H.
, and
Ahn
,
S.
,
2013
, “
Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
1062
1067
.
35.
Alaviyan Shahri
,
E. S.
,
Alfi
,
A.
, and
Tenreiro Machado
,
J. A.
,
2015
, “
An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control
,”
Appl. Math. Lett.
,
47
, pp.
26
34
.
36.
Alaviyan Shahri
,
E. S.
, and
Balochian
,
S.
,
2015
, “
A Stability Analysis on Fractional Order Linear System With Nonlinear Saturated Disturbance
,”
Natl Acad. Sci. Lett.
,
38
(
5
), pp.
409
413
.
37.
Alaviyan Shahri
,
E. S.
, and
Balochian
,
S.
,
2016
, “
An Analysis and Design Method for Fractional-Order Linear Systems Subject to Actuator Saturation and Disturbance
,”
Opt. Control Appl. Methods
,
37
(
2
), pp.
305
322
.
You do not currently have access to this content.