The present paper studies the nonlinear free flexural vibration of stiffened plates. The analysis is performed using a superparametric element. This element consists of an ACM plate-bending element along with in-plane displacements to represent the displacement field, and cubic serendipity shape function is used to define the geometry. The element can accommodate any arbitrary geometry, and the stiffeners either straight or curvilinear are modeled such that these can be placed anywhere on the plate. A number of numerical examples are presented to show its efficacy.

References

References
1.
Prathap
,
G.
, and
Varadan
,
T. K.
,
1978
, “
Large Amplitude Flexural Vibration of Stiffened Plates
,”
J. Sound Vib.
,
57
(
4
), pp.
583
593
.
2.
Varadan
,
T. K.
, and
Pandalai
,
K. A. V.
,
1979
, “
Large Amplitude Flexural Vibration of Eccentrically Stiffened Plates
,”
J. Sound Vib.
,
67
(
3
), pp.
329
340
.
3.
Khalil
,
M. R.
,
Olson
,
M. D.
, and
Anderson
,
D. L.
,
1988
, “
Nonlinear Dynamic Analysis of Stiffened Plates
,”
Comput. Struct.
,
29
(
6
), pp.
929
941
.
4.
Rao
,
S. R.
,
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
1993
, “
Large-Amplitude Finite Element Flexural Vibration of Plates/Stiffened Plates
,”
J. Acoust. Soc. Am.
,
93
(
6
), pp.
3250
3257
.
5.
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
1996
, “
Large Amplitude Free Flexural Vibration of Stiffened Plates
,”
AIAA J.
,
34
(
11
), pp.
2377
2383
.
6.
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
2000
, “
Geometric Nonlinear Analysis of Stiffened Plates by the Spline Finite Strip Method
,”
Comput. Struct.
,
76
(
6
), pp.
765
785
.
7.
Sheikh
,
A. H.
, and
Mukhopadhyay
,
M.
,
2002
, “
Linear and Nonlinear Transient Vibration Analysis of Stiffened Plate Structures
,”
Finite Elem. Anal. Des.
,
38
(
6
), pp.
477
502
.
8.
Kolli
,
M.
, and
Chandrashekhara
,
K.
,
1997
, “
Non-Linear Static and Dynamic Analysis of Stiffened Laminated Plates
,”
Int. J. Non-Linear Mech.
,
32
(
1
), pp.
89
101
.
9.
Kim
,
Y.
,
Jung
,
S.-K.
, and
White
,
D. W.
,
2007
, “
Transverse Stiffener Requirements in Straight and Horizontally Curved Steel I-Girders
,”
J. Bridge Eng.
,
12
(
2
), pp.
174
183
.
10.
Mitra
,
A.
,
Sahoo
,
P.
, and
Saha
,
K.
,
2011
, “
Mechanics of Materials and Structures
,”
J. Mech. Mater. Struct.
,
6
(
6
), pp.
883
914
.
11.
Abdelali
,
H. M.
,
Bikri
,
K. E.
, and
Benamar
,
R.
,
2012
, “
The Effects of Large Vibration Amplitudes on the Mode Shapes and Natural Frequencies of Thin Isotropic Skew Plates
,”
MATEC Web of Conferences
, Vol.
1
, p.
10004
.
12.
Ma
,
N.
,
Wang
,
R.
, and
Li
,
P.
,
2012
, “
Nonlinear Dynamic Response of a Stiffened Plate With Four Edges Clamped Under Primary Resonance Excitation
,”
Nonlinear Dyn.
,
70
(
1
), pp.
627
648
.
13.
Saheb
,
A. K. M.
, and
Rao
,
B. G. V.
,
2014
, “
Large Amplitude Free Vibrations of Mindlin Square Plates: A Novel Formulation
,”
Int. J. Curr. Eng. Technol.
,
2
, pp.
544
548
.
14.
Askari
,
H.
,
Saadatnia
,
Z.
,
Esmailzadeh
,
E.
, and
Younesian
,
D.
,
2014
, “
Multi-Frequency Excitation of Stiffened Triangular Plates for Large Amplitude Oscillations
,”
J. Sound Vib.
,
333
(
22
), pp.
5817
5835
.
15.
Adini
,
A.
, and
Clough
,
R. W.
,
1961
, “
Analysis of Plate Bending by the Finite Element Method
,” National Science Foundation, Report No. G7337.
16.
Melosh
,
R. J.
,
1963
, “
Basis for Derivation of Matrices for the Direct Stiffness Method
,”
AIAA J.
,
1
(
7
), pp.
1631
1637
.
17.
Zienkiewich
,
O. C.
, and
Taylor
,
R. L.
,
1989
,
The Finite Element Method
,
4th ed.
,
McGraw-Hill
,
London
.
18.
Barik
,
M.
, and
Mukhopadhyay
,
M.
,
1998
, “
Finite Element Free Flexural Vibration Analysis of Arbitrary Plates
,”
Finite Elem. Anal. Des.
,
29
(
2
), pp.
137
151
.
19.
Mukhopadhyay
,
M.
, and
Sheikh
,
A. H.
,
2004
,
Matrix and Finite Element Analyses of Structures
,
Ane Books
,
New Delhi
, Chap. 17.
20.
Mallet
,
R.
, and
Marcal
,
P.
,
1968
, “
Finite Element Analysis of Nonlinear Structures
,”
J. Struct. Div. ASCE
,
94
(
9
), pp.
2081
2105
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015755
21.
Barik
,
M.
, and
Mukhopadhyay
,
M.
,
2002
, “
A New Stiffened Plate Element for the Analysis of Arbitrary Plates
,”
Thin-Walled Struct.
,
40
(
7–8
), pp.
625
639
.
22.
Han
,
W.
, and
Petyt
,
M.
,
1997
, “
Geometrically Nonlinear Vibration Analysis of Thin, Rectangular Plates Using the Hierarchical Finite Element Method-I: The Fundamental Mode of Isotropic Plates
,”
Comput. Struct.
,
63
(
2
), pp.
295
308
.
23.
Corr
,
R. B.
, and
Jennings
,
E.
,
1976
, “
A Simultaneous Iteration Algorithm for Solution of Symmetric Eigenvalue Problem
,”
Int. J. Numer. Methods Eng.
,
10
(
3
), pp.
647
663
.
24.
Sheikh
,
A. H.
,
1992
, “
Linear and Nonlinear Analysis of Stiffened Plates Under Static and Dynamic Loading by the Finite Strip Method
,” Ph.D., thesis, Indian Institute of Technology, Kharagpur, India.
You do not currently have access to this content.