In this paper, the consistent rotation-based formulation (CRBF) is used to develop a new fully parametrized plate finite element (FE) based on the kinematic description of the absolute nodal coordinate formulation (ANCF). The ANCF/CRBF plate element has a general geometric description which is consistent with the basic principles of continuum mechanics, defines a unique rotation field, ensures the continuity of the rotation and strains at the element nodes, can describe an arbitrarily large displacement, and is consistent with computational geometry methods allowing for correctly describing complex shapes as demonstrated in this paper. The proposed ANCF/CRBF finite element does not suffer from the serious and fundamental problems encountered when using other large rotation vector formulations (LRVF) including the coordinate redundancy and violation of the principle of non-commutativity of the finite rotations which cannot be treated as vectors. The proposed bi-cubic ANCF/CRBF plate element employs, as nodal coordinates, three position coordinates and three finite rotation parameters. This element is obtained from a fully parameterized ANCF plate element by writing the position vector gradients of the ANCF plate element in terms of three finite rotation parameters using a nonlinear velocity transformation that systematically reduces the number of the element coordinates. The resulting element captures stretch, bending, and twist deformation modes and it allows for systematically describing complex curved geometry. Because of the lower dimensionality of the resulting ANCF/CRBF plate element, it does not capture complex deformation modes that can be captured using the more general ANCF finite elements. Furthermore, the ANCF/CRBF element mass matrix is not constant, leading to nonlinear Coriolis and centrifugal inertia forces. The new element is validated by examining its performance using several examples that include pendulum plate, free falling plate, and tire models. The results obtained using this new element are compared with the results obtained using the bi-cubic fully parameterized ANCF plate element, the bi-linear shell element, and the conventional solid element implemented in the commercial software ANSYS.

References

References
1.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
J. Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
.
2.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
4th ed.
,
Cambridge University Press
,
Cambridge, UK
.
3.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
4.
Ding
,
J.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.
5.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
6.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
J. Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.
7.
Pappalardo
,
C. M.
,
Patel
,
M. D.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2015
, “
Contact Force Control in Multibody Pantograph/Catenary Systems
,”
Proc. Inst. Mech. Eng., Part K
, pp.
1
22
.
8.
Shabana
,
A. A.
,
2015
, “
ANCF Consistent Rotation-Based Finite Element Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), pp.
1
4
.
9.
Zheng
,
Y.
, and
Shabana
,
A. A.
,
2015
, “
Planar ANCF/CRBF Shear Deformable Beam
,”
Nonlinear Dyn.
(in press).
10.
Dmitrochenko
,
O.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2015
, “
The Simplest 3-, 6- and 8-Noded Fully-Parameterized ANCF Plate Elements Using Only Transverse Slopes
,”
Multibody Syst. Dyn.
,
34
(
1
), pp.
23
51
.
11.
Matikainen
,
M. K.
,
Valkeapaa
,
A. I.
,
Mikkola
,
A. M.
, and
Schwab
,
A. L.
,
2014
, “
A Study of Moderately Thick Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
309
338
.
12.
Betsch
,
P.
, and
Stein
,
E.
,
1996
, “
A Nonlinear Extensible 4-Node Shell Element Based on Continuum Theory and Assumed Strain Interpolations
,”
J. Nonlinear Sci.
,
6
(
2
), pp.
169
199
.
13.
Roberson
,
R. E.
, and
Schwertassek
,
R.
,
1988
,
Dynamics of Multibody Systems
,
Springer
,
Berlin
.
14.
Wittenburg
,
J.
,
2007
,
Dynamics of Multibody Systems
,
2nd ed.
,
Springer
,
Berlin
.
15.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
16.
Bogacki
,
P.
, and
Shampine
,
L. F.
,
1989
, “
A 3(2) Pair of Runge-Kutta Formulas
,”
Appl. Math. Lett.
,
2
(
4
), pp.
321
325
.
17.
Shabana
,
A. A.
,
2015
, “
ANCF Reference Node for Multibody System Analysis
,”
IMechE J. Multibody Dyn.
,
229
(
1
), pp.
109
112
.
18.
Shabana
,
A. A.
,
2015
, “
ANCF Tire Assembly Model for Multibody System Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), pp.
1
4
.
19.
Patel
,
M. D.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
,
2015
, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng., Part K
,
230
(
1
), pp.
69
84
.
20.
Pappalardo
,
C. M.
,
Yu
,
Z.
,
Zhang
,
X.
, and
Shabana
,
A. A.
,
2016
, “
Rational ANCF Thin Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), pp.
1
15
.
You do not currently have access to this content.