A structural decomposition method based on symbol operation for solving differential algebraic equations (DAEs) is developed. Constrained dynamical systems are represented in terms of DAEs. State-space methods are universal for solving DAEs in general forms, but for complex systems with multiple degrees-of-freedom, these methods will become difficult and time consuming because they involve detecting Jacobian singularities and reselecting the state variables. Therefore, we adopted a strategy of dividing and conquering. A large-scale system with multiple degrees-of-freedom can be divided into several subsystems based on the topology. Next, the problem of selecting all of the state variables from the whole system can be transformed into selecting one or several from each subsystem successively. At the same time, Jacobian singularities can also be easily detected in each subsystem. To decompose the original dynamical system completely, as the algebraic constraint equations are underdetermined, we proposed a principle of minimum variable reference degree to achieve the bipartite matching. Subsequently, the subsystems are determined by aggregating the strongly connected components in the algebraic constraint equations. After that determination, the free variables remain; therefore, a merging algorithm is proposed to allocate these variables into each subsystem optimally. Several examples are given to show that the proposed method is not only easy to implement but also efficient.

References

References
1.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
2.
Petzold
,
L.
,
1982
, “
Differential/Algebraic Equations Are not ODE's
,”
SIAM J. Sci. Stat. Comput.
,
3
(
3
), pp.
367
384
.
3.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
, Vol.
14
,
Siam
, pp.
16
18
.
4.
Negrut
,
D.
,
Jay
,
L. O.
, and
Khude
,
N.
,
2009
, “
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021008
.
5.
Gear
,
C. W.
,
1988
, “
Differential-Algebraic Equation Index Transformations
,”
SIAM J. Sci. Stat. Comput.
,
9
(
1
), pp.
39
47
.
6.
Pantelides
,
C. C.
,
1988
, “
The Consistent Initialization of Differential-Algebraic Systems
,”
SIAM J. Sci. Stat. Comput.
,
9
(
2
), pp.
213
231
.
7.
Mattsson
,
S. E.
, and
Söderlind
,
G.
,
1993
, “
Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives
,”
SIAM J. Sci. Comput.
,
14
(
3
), pp.
677
692
.
8.
Yen
,
J.
,
1993
, “
Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds
,”
SIAM J. Numer. Anal.
,
30
(
2
), pp.
553
568
.
9.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
10.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
11.
Barrlund
,
A.
, and
Kågström
,
B.
,
1990
, “
Analytical and Numerical Solutions to Higher Index Linear Variable Coefficient DAE Systems
,”
J. Comput. Appl. Math.
,
31
(
3
), pp.
305
330
.
12.
Bae
,
D.
,
Cho
,
H.
,
Lee
,
S.
, and
Moon
,
W.
,
2001
, “
Recursive Formulas for Design Sensitivity Analysis of Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
29
), pp.
3865
3879
.
13.
Bursi
,
O. S.
,
Wang
,
Z.
,
Jia
,
C.
, and
Wu
,
B.
,
2013
, “
Monolithic and Partitioned Time Integration Methods for Real-Time Heterogeneous Simulations
,”
Comput. Mech.
,
52
(
1
), pp.
99
119
.
14.
Laulusa
,
A.
, and
Bauchau
,
O. A.
,
2008
, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011004
.
15.
Blajer
,
W.
,
2002
, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
,
7
(
3
), pp.
265
284
.
16.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
37
), pp.
3151
3160
.
17.
Blajer
,
W.
,
2011
, “
Methods for Constraint Violation Suppression in the Numerical Simulation of Constrained Multibody Systems—A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13
), pp.
1568
1576
.
18.
Haug
,
E. J.
,
Negrut
,
D.
, and
lancu
,
M.
,
1997
, “
A State-Space-Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics*
,”
J. Struct. Mech.
,
25
(
3
), pp.
311
334
.
19.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
,
2003
, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
121
142
.
20.
Krenk
,
S.
, and
Nielsen
,
M. B.
,
2014
, “
Conservative Rigid Body Dynamics by Convected Base Vectors With Implicit Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
437
453
.
21.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
(
1
), pp.
247
255
.
22.
de Jalon
,
J. G.
, and
Gutierrez-Lopez
,
M. D.
,
2013
, “
Multibody Dynamics With Redundant Constraints and Singular Mass Matrix: Existence, Uniqueness, and Determination of Solutions for Accelerations and Constraint Forces
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
311
341
.
23.
Dopico
,
D.
,
Zhu
,
Y.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2013
, “
Direct and Adjoint Sensitivity Analysis of Multibody Systems Using Maggi's Equations
,”
ASME
Paper No. DETC2013-12696.
24.
Haug
,
E. J.
,
1989
,
Computer Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
,
Boston
.
25.
Hilber
,
H. M.
,
Hughes
,
T. J.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.
26.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
27.
Yen
,
J.
,
Petzold
,
L.
, and
Raha
,
S.
,
1998
, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
3
), pp.
341
355
.
28.
Simeon
,
B.
,
2013
, “
Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach
,” (Differential-Algebraic Equations Forum),
Springer
,
Berlin
.
29.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2005
, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME
Paper No. DETC2005-85096.
30.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
31.
Arnold
,
M.
,
Brüls
,
O.
, and
Cardona
,
A.
,
2015
, “
Error Analysis of Generalized-α Lie Group Time Integration Methods for Constrained Mechanical Systems
,”
Numer. Math.
,
129
(
1
), pp.
149
179
.
32.
Cardona
,
A.
, and
Geradin
,
M.
,
1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.
33.
Jay
,
O. L.
, and
Negrut
,
D.
,
2009
, “
A Second Order Extension of the Generalized–α Method for Constrained Systems in Mechanics
,”
Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
, pp.
143
158
.
34.
Carpanzano
,
E.
,
2000
, “
Order Reduction of General Nonlinear DAE Systems by Automatic Tearing
,”
Math. Comput. Modell. Dyn. Syst.
,
6
(
2
), pp.
145
168
.
35.
Hidalgo
,
A. F.
, and
Garcia de Jalon
,
J.
,
2013
, “
Efficient Implementation of a Semi-Recursive Formulation for the Dynamics of Large Size Multibody Systems
,”
Rev. Int. Metodos Numericos Cálculo Diseño en Ingeniería
,
29
(
4
), pp.
225
233
.
36.
Koul
,
M.
,
Shah
,
S. V.
,
Saha
,
S. K.
, and
Manivannan
,
M.
,
2014
, “
Reduced-Order Forward Dynamics of Multiclosed-Loop Systems
,”
Multibody Syst. Dyn.
,
31
(
4
), pp.
451
476
.
37.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.
38.
Wittenburg
,
J.
,
2007
,
Dynamics of Multibody Systems
,
Springer Science & Business Media
,
Berlin
, pp.
129
147
.
39.
Schweizer
,
B.
, and
Lu
,
D.
,
2015
, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints
,”
Multibody Syst. Dyn.
,
34
(
2
), pp.
129
161
.
40.
Felippa
,
C. A.
,
Park
,
K. C.
, and
Farhat
,
C.
,
2001
, “
Partitioned Analysis of Coupled Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
24
), pp.
3247
3270
.
41.
González
,
F.
,
Luaces
,
A.
,
Lugrís
,
U.
, and
González
,
M.
,
2009
, “
Non-Intrusive Parallelization of Multibody System Dynamic Simulations
,”
Comput. Mech.
,
44
(
4
), pp.
493
504
.
42.
Hopcroft
,
J. E.
, and
Karp
,
R. M.
,
1973
, “
An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs
,”
SIAM J. Comput.
,
2
(
4
), pp.
225
231
.
43.
Nuutila
,
E.
, and
Soisalon-Soininen
,
E.
,
1994
, “
On Finding the Strongly Connected Components in a Directed Graph
,”
Inf. Process. Lett.
,
49
(
1
), pp.
9
14
.
44.
Carpanzano
,
E.
, and
Maffezzoni
,
C.
,
1998
, “
Symbolic Manipulation Techniques for Model Simplification in Object-Oriented Modelling of Large Scale Continuous Systems
,”
Math. Comput. Simul.
,
48
(
2
), pp.
133
150
.
45.
Tongyuan
,
2016
, “Complex Engineering Systems Modeling, Simulation, Analysis and Optimization,”
Suzhou Tongyuan Soft Control Information Technology Co., Ltd.
,
Suzhou, China
.
46.
Modelica Association
,
2016
, “Modelica Documentation,” Open Source Modelica Consortium, Sweden, https://openmodelica.org/useresresources/userdocumentation
47.
Dassault
Systèmes
,
2016
, “
CATIA Systems Engineering—DYMOLA
,” Dassault Systèmes,
Vélizy-Villacoublay
,
France
.
You do not currently have access to this content.