A numerical method for finding spherically symmetric pseudobreathers of a nonlinear wave equation is presented. The algorithm, based on pseudospectral methods, is applied to find quasi-periodic solutions with force terms being continuous approximations of the signum function. The obtained pseudobreathers slowly radiate energy and decay after some (usually long) time depending on the period that characterizes (unambiguously) the initial configuration.

References

1.
Smiley
,
M. W.
,
1990
, “
Numerical Determination of Breathers and Forced Oscillations of Nonlinear Wave Equations
,”
Computational Solution of Nonlinear Systems of Equations
(Lectures in Applied Mathematics), 3rd ed., Vol.
26
,
American Mathematical Society
,
Providence, RI
, pp.
605
617
.
2.
Smiley
,
M. W.
,
1989
, “
Breathers and Forced Oscillations of Nonlinear Wave Equations on R3
,”
J. Reine Angew. Math.
,
1989
(
398
), pp.
25
35
.
3.
Smiley
,
M. W.
,
1988
, “
Time-Periodic Solutions of Wave Equations on R1 and R3
,”
Math. Methods Appl. Sci.
,
10
(
4
), pp.
457
475
.
4.
Smiley
,
M. W.
,
1992
, “
On the Existence of Smooth Breathers for Nonlinear Wave Equations
,”
J. Differ. Equations
,
96
(
2
), pp.
295
317
.
5.
Fodor
,
G.
,
Forgacs
,
P.
,
Grandclement
,
P.
, and
Rácz
,
I.
,
2006
, “
Oscillons and Quasibreathers in the phi(4) Klein-Gordon Model
,”
Phys. Rev. D
,
74
(
12
), p.
124003
.
6.
Salmi
,
P.
, and
Hindmarsh
,
M.
,
2012
, “
Radiation and Relaxation of Oscillons
,”
Phys. Rev. D
,
85
(
8
), p.
085033
.
7.
Arodź
,
H.
,
Klimas
,
P.
, and
Tyranowski
,
T.
,
2008
, “
Compact Oscillons in the Signum-Gordon Model
,”
Phys. Rev. D
,
77
(
4
), p.
047701
.
8.
Arodź
,
H.
, and
Świerczynski
,
Z.
,
2011
, “
Swaying Oscillons in the Signum-Gordon Model
,”
Phys. Rev. D
,
84
(
6
), p.
067701
.
9.
Arodź
,
H.
,
Karkowski
,
J.
, and
Świerczynski
,
Z.
,
2013
, “
Total Screening and Finite Range Forces From Ultramassive Scalar Fields
,”
Phys. Rev. D
,
87
(
12
), p.
125004
.
10.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Dover Publications
,
Mineola, NY
.
11.
Fornberg
,
B.
,
1996
,
A Practical Guide to Pseudospectral Methods
,
Cambridge University Press
,
New York
.
12.
Gupta
,
A.
,
2007
, “
A Shared- and Distributed-Memory Parallel General Sparse Direct Solver
,”
AAECC
,
18
(
3
), pp.
263
277
.
13.
Segur
,
H.
, and
Kruskal
,
M. D.
,
1987
, “
Nonexistence of Small-Amplitude Breather Solutions in phi(4) Theory
,”
Phys. Rev. Lett.
,
58
(
8
), pp.
747
750
.
14.
Kichenassamy
,
S.
,
1991
, “
Breather Solutions of the Nonlinear Wave Equation
,”
Commun. Pure Appl. Math.
,
44
(
7
), pp.
789
818
.
15.
Denzler
,
J.
,
1993
, “
Nonpersistence of Breather Families for the Perturbed Sine Gordon Equation
,”
Common. Math. Phys.
,
158
(
2
), pp.
397
430
.
16.
Denzler
,
J.
,
1995
, “
Second Order Nonpersistence of the Sine Gordon Breather Under an Exceptional Perturbation
,”
Ann. Inst. Henri Poincaré Anal. Non Linéaire
,
12
(
2
), pp.
201
239
.https://eudml.org/doc/78358
You do not currently have access to this content.