The double-sided fluid film force on the inner and outer ring surfaces of a floating ring bearing (FRB) creates strong nonlinear response characteristics such as coexistence of multiple orbits, Hopf bifurcation, Neimark-Sacker (N-S) bifurcation, and chaos in operations. An improved autonomous shooting with deflation algorithm is applied to a rigid rotor supported by FRBs for numerically analyzing its nonlinear behavior. The method enhances computation efficiency by avoiding previously found solutions in the numerical-based search. The solution manifold for phase state and period is obtained using arc-length continuation. It was determined that the FRB-rotor system has multiple response states near Hopf and N-S bifurcation points, and the bifurcation scenario depends on the ratio of floating ring length and diameter (L/D). Since multiple responses coexist under the same operating conditions, simulation of jumps between two stable limit cycles from potential disturbance such as sudden base excitation is demonstrated. In addition, this paper investigates chaotic motions in the FRB-rotor system, utilizing four different approaches, strange attractor, Lyapunov exponent, frequency spectrum, and bifurcation diagram. A numerical case study for quenching the large amplitude motion by adding unbalance force is provided and the result shows synchronization, i.e., subsynchronous frequency components are suppressed. In this research, the fluid film forces on the FRB are determined by applying the finite element method while prior work has utilized a short bearing approximation. Simulation response comparisons between the short bearing and finite bearing models are discussed.

References

References
1.
Muszynska
,
A.
,
1986
, “
Whirl and Whip—Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.
2.
Muszynska
,
A.
,
1988
, “
Stability of Whirl and Whip in Rotor Bearing System
,”
J. Sound Vib.
,
127
(
1
) pp.
49
64
.
3.
Hollis
,
P.
, and
Taylor
,
D. L.
,
1986
, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
184
189
.
4.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor in Short Journal Bearings
,”
Nonlinear Dyn.
,
10
(
3
), pp.
251
269
.
5.
Zhao
,
J. Y.
, and
Hahn
,
E. J.
,
1993
, “
Subharmonic, Quasi-Periodic and Chaotic Motions of a Rigid Rotor Supported by an Eccentric Squeeze Film Damper
,”
Proc. Inst. Mech. Eng. Part C
,
207
(
6
), pp.
383
392
.
6.
Kim
,
Y. B.
, and
Noah
,
S. T.
, “
Bifurcation Analysis for Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.
7.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Response and Bifurcation Analysis of a MDOF Rotor System With a Strong Nonlinearity
,”
Nonlinear Dyn.
,
2
(
3
), pp.
215
234
.
8.
Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
9.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic Systems With Nonlinear Supports: A General Approach
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
111
(2), pp.
187
193
.
10.
Jean
,
A. N.
, and
Nelson
,
H. D.
,
1990
, “
Periodic Response Investigation of Large Order Non-Linear Rotordynamic Systems Using Collocation
,”
J. Sound Vib.
,
143
(
3
), pp.
473
489
.
11.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method-Application To Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
20
.
12.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1998
, “
An Algorithm for Response and Stability of Large Order Non-Linear Systems—Application to Rotor Systems
,”
J. Sound Vib.
,
214
(
4
), pp.
695
723
.
13.
Kirk
,
R. G.
, and
Gunter
,
E. J.
,
1976
, “
Short Bearing Analysis Applied to Rotor Dynamics—Part I: Thoery
,”
ASME J. Tribol.
,
98
(
1
), pp.
47
56
.
14.
Childs
,
D.
,
Moes
,
H.
, and
Van Leeuwen
,
H.
,
1977
, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Lubrication Tech.
,
99
(
2
), pp.
198
210
.
15.
Nguyen-Schäfer
,
H.
,
2012
,
Rotordynamics of Automotive Turbochargers
,
Springer
, Berlin.
16.
Tanaka
,
M.
, and
Hori
,
Y.
,
1972
, “
Stability Characteristics of Floating Bush Bearings
,”
ASME J. Lubr. Technol.
,
94
(
3
), pp.
248
259
.
17.
Bonello
,
P.
,
2009
, “
Transient Modal Analysis of the Non-Linear Dynamics of a Turbocharger on Floating Ring Bearings
,”
Proc. Inst. Mech. Eng. Part J.
,
223
(
1
), pp.
79
93
.
18.
Holt
,
C.
,
San Andrés
,
L.
,
Sahay
,
S.
,
Tang
,
P.
,
La Rue
,
G.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
.
19.
Tian
,
L.
,
Wang
,
W. J.
, and
Peng
,
Z. J.
,
2013
, “
Nonlinear Effects of Unbalance in the Rotor-Floating Ring Bearing System of Turbochargers
,” “
Mech. Syst. Signal Process.
,
34
(1–2), pp.
298
320
.
20.
Schweizer
,
B.
,
2009
, “
Oil Whirl, Oil Whip and Whirl/Whip Synchronization Occurring in Rotor Systems With Full-Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
509
532
.
21.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2011
, “
Bifurcation Analysis of a Turbocharger Rotor Supported by Floating Ring Bearings
,” IUTAM Symposium on Emerging Trends in Rotor Dynamics.
Springer
,
Berlin
, pp.
335
347
.
22.
Boyaci
,
A.
,
Hartmut
,
H.
,
Seemann
,
W.
,
Proppe
,
C.
, and
Wauer
,
J.
,
2009
, “
Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring Bearings
,”
Nonlinear Dyn.
,
57
(
4
), pp.
497
507
.
23.
Brown
,
K. M.
, and
Gearhart
,
W. B.
,
1971
, “
Deflation Techniques for the Calculation of Further Solutions of a Nonlinear System
,”
Numerische Math.
,
16
(
4
) pp.
334
342
.
24.
Ojika
,
T.
,
Satoshi
,
W.
, and
Taketomo
,
M.
,
1983
, “
Deflation Algorithm for the Multiple Roots of a System of Nonlinear Equations
,”
J. Math. Anal. Appl.
,
96
(
2
), pp.
463
479
.
25.
Kalantonis
,
V. S.
,
Perdios
,
E. A.
,
Perdious
,
A. E.
,
Ragos
,
O.
, and
Vrahatis
,
M. N.
,
2003
, “
Deflation Techniques for the Determination of Periodic Solutions of a Certain Period
,”
Astrophys. Space Sci.
,
288
(
4
), pp.
489
497
.
26.
Mongkolcheep
,
K.
,
Ruimi
,
A.
, and
Palazzolo
,
A.
,
2015
, “
Modal Reduction Technique for Predicting Onset of Chaotic Behavior Due to Lateral Vibrations in Drillstrings
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021003
.
27.
Mondy
,
R. E.
,
2005
, “
The Diagnosing and Corrective Actions Taken to Reduce the Effects of Steam Whirl in a General Electric D-11 Steam Turbine
,”
International Symposium for Stability Control of Rotating Machinery ISCORMA-3
, Cleveland, OH, pp.
19
23
.
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
, New York.
29.
Mees
,
A. I.
,
1981
,
Dynamics of Feedback Systems
,
Wiley
, New York.
30.
Tian
,
L.
,
Wang
,
W. J.
, and
Peng
,
Z. J.
,
2011
, “
Dynamic Behaviours of a Full Floating Ring Bearing Supported Turbocharger Rotor With Engine Excitation
,”
J. Sound Vib.
,
330
(
20
), pp.
4851
4874
.
You do not currently have access to this content.