As a especial type of synchronous method, compound synchronization is designed by multiple drive systems and response systems. In this paper, a new type of compound synchronization of three drive systems and two response systems is investigated. According to synchronous control of five memristive cellular neural networks (CNNs), the theoretical analysis and demonstration are given out by using Lyapunov stability theory. The corresponding numerical simulations and synchronous performance analysis are supplied to verify the feasibility and scalability of compound synchronization design.

References

References
1.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2010
, “
Complete Synchronization of Chaotic Complex Nonlinear Systems With Uncertain Parameters
,”
Nonlinear Dyn.
,
62
(
4
), pp.
875
882
.
2.
Wen
,
S.
,
Bao
,
G.
,
Zeng
,
Z.
,
Chene
,
Y.
, and
Huang
,
T.
,
2013
, “
Global Exponential Synchronization of Memristor-Based Recurrent Neural Networks With Time-Varying Delays
,”
Neural Networks
,
48
, pp.
195
203
.
3.
Koronovskii
,
A. A.
,
Moskalenko
,
O. I.
, and
Hramov
,
A. E.
,
2010
, “
Hidden Data Transmission Using Generalized Synchronization in the Presence of Noise
,”
Tech. Phys.
,
55
(
4
), pp.
435
441
.
4.
Roy
,
P. K.
,
Hens
,
C.
,
Grosu
,
I.
, and
Dana
,
S. K.
,
2011
, “
Engineering Generalized Synchronization in Chaotic Oscillators
,”
Chaos
,
21
(
1
), p.
013106
.
5.
Li
,
D.
,
Li
,
X.
,
Cui
,
D.
, and
Li
,
Z.
,
2011
, “
Phase Synchronization With Harmonic Wavelet Transform With Application to Neuronal Populations
,”
Neurocomputing
,
74
(
17
), pp.
3389
3403
.
6.
Odibat
,
Z.
,
2012
, “
A Note on Phase Synchronization in Coupled Chaotic Fractional Order Systems
,”
Nonlinear Anal.: Real World Appl.
,
13
(
2
), pp.
779
789
.
7.
Bhowmick
,
S. K.
,
Pal
,
P.
,
Roy
,
P. K.
, and
Dana
,
S. K.
,
2012
, “
Lag Synchronization and Scaling of Chaotic Attractor in Coupled System
,”
Chaos
,
22
(
2
), p.
023151
.
8.
Yu
,
J.
,
Hu
,
C.
,
Jiang
,
H.
, and
Teng
,
Z.
,
2012
, “
Exponential Lag Synchronization for Delayed Fuzzy Cellular Neural Networks Via Periodically Intermittent Control
,”
Math. Comput. Simul.
,
82
(
5
), pp.
895
908
.
9.
Wang
,
X. Y.
, and
Wang
,
M. J.
,
2010
, “
Projective Synchronization of Nonlinear-Coupled Spatiotemporal Chaotic Systems
,”
Nonlinear Dyn.
,
62
(
3
), pp.
567
571
.
10.
Sun
,
J.
,
Shen
,
Y.
, and
Zhang
,
G.
,
2012
, “
Transmission Projective Synchronization of Multi-Systems With Non-Delayed and Delayed Coupling Via Impulsive Control
,”
Chaos
,
22
(
4
), p.
043107
.
11.
Sun
,
J.
,
Shen
,
Y.
,
Yin
,
Q.
, and
Xu
,
C.
,
2013
, “
Compound Synchronization of Four Memristor Chaotic Oscillator Systems and Secure Communication
,”
Chaos
,
23
(
1
), p.
013140
.
12.
Wu
,
A.
,
2014
, “
Hyperchaos Synchronization of Memristor Oscillator System Via Combination Scheme
,”
Adv. Differ. Equations
,
2014
(
1
), pp.
1
11
.
13.
Sun
,
J.
,
Shen
,
Y.
,
Zhang
,
G.
,
Xu
,
C.
, and
Cui
,
G.
,
2013
, “
Combination–Combination Synchronization Among Four Identical or Different Chaotic Systems
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1211
1222
.
14.
Jin-E
,
Z.
,
2014
, “
Combination-Combination Hyperchaos Synchronization of Complex Memristor Oscillator System
,”
Math. Probl. Eng.
,
2014
, p.
591089
.
15.
Chua
,
L. O.
,
1971
, “
Memristor—The Missing Circuit Element
,”
IEEE Trans. Circuit Theory
,
18
(
5
), pp.
507
519
.
16.
Itoh
,
M.
, and
Chua
,
L. O.
,
2008
, “
Memristor Oscillators
,”
Int. J. Bifurcation Chaos
,
18
(
11
), pp.
3183
3206
.
17.
Bao
,
B. C.
,
Liu
,
Z.
, and
Xu
,
J. P.
,
2010
, “
Steady Periodic Memristor Oscillator With Transient Chaotic Behaviors
,”
Electron. Lett.
,
46
(
3
), pp.
228
230
.
18.
Wen
,
S.
,
Zeng
,
Z.
,
Huang
,
T.
, and
Chen
,
Y.
,
2013
, “
Fuzzy Modeling and Synchronization of Different Memristor-Based Chaotic Circuits
,”
Phys. Lett. A
,
377
(
34
), pp.
2016
2021
.
19.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Neural Networks: Applications
,”
IEEE Trans. Circuits Syst.
,
35
(
10
), pp.
1273
1290
.
20.
Benettin
,
G.
,
Galgani
,
L.
,
Giorgilli
,
A.
, and
Strelcyn
,
J.-M.
,
1980
, “
Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing all of Them. Part 1: Theory
,”
Meccanica
,
15
(
1
), pp.
9
20
.
You do not currently have access to this content.