This paper proposes an approach to formulation and integration of the governing equations for aircraft flight simulation that is based on a Lie group setting, and leads to a nonsingular coordinate-free numerical integration. Dynamical model of an aircraft is formulated in Lie group state space form and integrated by ordinary-differential-equation (ODE)-on-Lie groups Munthe-Kaas (MK) type of integrator. By following such an approach, it is assured that kinematic singularities, which are unavoidable if a three-angles-based rotation parameterization is applied for the whole 3D rotation domain, do not occur in the proposed noncoordinate formulation form. Moreover, in contrast to the quaternion rotation parameterization that imposes additional algebraic constraint and leads to integration of differential-algebraic equations (DAEs) (with necessary algebraic-equation-violation stabilization step), the proposed formulation leads to a nonredundant ODE integration in minimal form. To this end, this approach combines benefits of both traditional approaches to aircraft simulation (i.e., three angles parameterization and quaternions), while at the same time it avoids related drawbacks of the classical models. Besides solving kinematic singularity problem without introducing DAEs, the proposed formulation also exhibits numerical advantages in terms of better accuracy when longer integration steps are applied during simulation and when aircraft motion pattern comprises steady rotational component of its 3D motion. This is due to the fact that a Lie group setting and applied MK integrator determine vehicle orientation on the basis of integration of local (tangent, nonlinear) kinematical differential equations (KDEs) that model process of 3D rotations (i.e., vehicle attitude reconstruction on nonlinear manifold SO(3)) more accurately than “global” KDEs of the classical formulations (that are linear in differential equations part in the case of standard quaternion models).

References

References
1.
Fang
,
A. C.
, and
Zimmerman
,
B. G.
,
1969
, “
Digital Simulation of Rotational Kinematics
,”
Report No. NASA TN-D-5302
.
2.
Etkin
,
B.
, and
Reid
,
L. D.
,
1996
,
Dynamics of Flight: Stability and Control
,
Wiley
,
New York
.
3.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
2004
,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
,
Springer
,
New York
.
4.
Stevens
,
B. L.
, and
Lewis
,
F. L.
,
1992
,
Aircraft Control and Simulation
,
Wiley
,
New York
.
5.
Shutz
,
B. F.
,
1980
,
Geometrical Methods of Mathematical Physics
,
Cambridge University Press
,
Cambridge, UK
.
6.
Munthe-Kaas
,
H.
,
1998
, “
Runge–Kutta Methods on Lie Groups
,”
BIT Numer. Math.
,
38
(
1
), pp.
92
111
.
7.
Crouch
,
P. E.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci.
,
3
(
1
), pp.
1
33
.
8.
Celledoni
,
E.
, and
Owren
,
B.
,
2003
, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3–4
), pp.
421
438
.
9.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.
10.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.
11.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
(
0
), pp.
121
137
.
12.
Cardona
,
A.
, and
Geradin
,
M.
,
1988
, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
26
(
11
), pp.
2403
2438
.
13.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1988
, “
On the Dynamics in Space of Rods Undergoing Large Motions—Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
2
), pp.
125
161
.
14.
Simo
,
J.
, and
Wong
,
K.
,
1991
, “
Unconditionally Stable Algorithms for Rigid Body Dynamics That Exactly Preserve Energy and Momentum
,”
Int. J. Numer. Methods Eng.
,
31
(
1
), pp.
19
52
.
15.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
, pp.
307
331
.
16.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
,
2000
, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
,
4
, pp.
129
193
.
17.
Leitz
,
T.
,
Ober-Blöbaum
,
S.
, and
Leyendecker
,
S.
,
2014
, “
Variational Lie Group Formulation of Geometrically Exact Beam Dynamics—Synchronous and Asynchronous Integration
,”
Multibody Dynamics: Computational Methods and Applications
,
Z.
Terze
, ed.,
Springer, Cham, Switzerland
.
18.
Iserles
,
A.
,
Munthe–Kaas
,
H. Z.
,
Norsett
,
S. P.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numerica
,
9
(
0
), pp.
215
365
.
19.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration
,
Springer-Verlag
,
Berlin
.
20.
Holm
,
D. D.
,
2008
,
Geometric Mechanics—Part II: Rotating, Translating and Rolling
,
Imperial College Press
,
London
.
21.
Morawiec
,
A.
,
2004
,
Orientations and Rotations
,
Springer-Verlag
,
Berlin
.
22.
Boothby
,
W.
,
2003
,
An Introduction to Differentiable Manifolds and Riemannian Geometry
,
2nd ed.
,
Academic Press
,
San Diego, CA
.
23.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
On the Choice of Configuration Space for Numerical Lie Group Integration of Constrained Rigid Body Systems
,”
J. Comput. Appl. Math.
,
262
, pp.
3
13
.
24.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.
25.
Müller
,
A.
,
2010
, “
Approximation of Finite Rigid Body Motions From Velocity Fields
,”
J. Appl. Math. Mech./Z. Angew. Math. Mech. (ZAMM)
,
90
(
6
), pp.
514
521
.
26.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2016
, “
Singularity-Free Time Integration of Rotational Quaternions Using Non-Redundant Ordinary Differential Equations
,”
Multibody Syst. Dyn.
(online).
27.
Budd
,
C. J.
, and
Iserles
,
A.
,
1999
, “
Geometric Integration: Numerical Solution of Differential Equations on Manifolds
,”
Philos. Trans.: Math., Phys. Eng. Sci.
,
357
(
1754
), pp.
945
956
.
28.
McCormick
,
B. W.
,
1995
,
Aerodynamics, Aeronautics and Flight Mechanics
,
2nd ed.
,
Wiley
,
New York
.
29.
ISO
,
1988
, “
ISO Concepts, Quantities and Symbols for Flight Dynamics—Part 1: Aircraft Motion Relative to the Air
,” Standard No. ISO/DIS 1151/1.
30.
ISO
,
1988
, “
ISO Concepts, Quantities and Symbols for Flight Dynamics—Part 2: Motion of the Aircraft and the Atmosphere Relative to the Earth
,” Standard No. ISO/DIS 1151/2.
31.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
This content is only available via PDF.
You do not currently have access to this content.