A mathematical model that invokes the Kutta condition to account for vortex shedding from the trailing edge of a free hydrofoil in a planar ideal fluid is compared with a canonical model for the dynamics of a terrestrial vehicle subject to a nonintegrable velocity constraint. The Kutta condition is shown to be nonintegrable in a sense that parallels that in which the constraint on the terrestrial vehicle is nonintegrable. Simulations of the two systems' dynamics reinforce the analogy between the two.

References

References
1.
Kelly
,
S. D.
, and
Xiong
,
H.
,
2010
, “
Self-Propulsion of a Free Hydrofoil With Localized Discrete Vortex Shedding: Analytical Modeling and Simulation
,”
Theor. Comput. Fluid Dyn.
,
24
(
1
), pp.
45
50
.
2.
Kanso
,
E.
,
2010
, “
Swimming in an Inviscid Fluid
,”
Theor. Comput. Fluid Dyn.
,
24
, pp.
201
207
.
3.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2013
, “
Dynamics and Self-Propulsion of a Spherical Body Shedding Coaxial Vortex Rings in an Ideal Fluid
,”
Regular Chaotic Dyn.
,
18
, pp.
21
32
.
4.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2013
, “
Reduced-Order Modeling of Propulsive Vortex Shedding From a Free Pitching Hydrofoil With an Internal Rotor
,”
American Control Conference
, June 17–19, pp.
615
620
.
5.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2012
, “
Up a Creek Without a Paddle: Idealized Aquatic Locomotion Via Forward Vortex Shedding
,”
ASME
Paper No. DSCC2012-MOVIC2012-8863.
6.
Tallapragada
,
P.
,
2015
, “
A Swimming Robot With an Internal Rotor as a Nonholonomic System
,”
American Control Conference
, July 1–3, pp.
657
662
.
7.
Tallapragada
,
P.
, and
Kelly
,
S. D.
,
2015
, “
Self-Propulsion of Free Solid Bodies With Internal Rotors Via Localized Singular Vortex Shedding in Planar Ideal Fluids
,”
Eur. Phys. J.: Spec. Top.
,
224
(
17
), pp.
3185
3197
.
8.
Kutta
,
W. M.
,
1902
, “
Auftriebskrafte in stromenden Flussigkeiten
,”
Ill. Aeronaut. Mitt.
,
6
, pp.
133
135
.
9.
Milne-Thomson
,
L. M.
,
1966
,
Theoretical Aerodynamics
,
Dover
,
New York
.
10.
Kelly
,
S. D.
, and
Tallapragada
,
P.
,
2012
, “
Symmetries and Constraints in Aquatic Propulsion Via Vortex Shedding
,”
Ninth International Conference on Flow Dynamics
.
11.
Kelly
,
S. D.
,
Fairchild
,
M. J.
,
Hassing
,
P. M.
, and
Tallapragada
,
P.
,
2012
, “
Proportional Heading Control for Planar Navigation: The Chaplygin Beanie and Fishlike Robotic Swimming
,”
American Control Conference
, pp.
4885
4890
.
12.
Kai
,
T.
, and
Kimura
,
H.
,
2006
, “
Theoretical Analysis of Affine Constraints on a Configuration Manifold—Part I: Integrability and Nonintegrability Conditions for Affine Constraints and Foliation Structures of a Configuration Manifold
,”
Trans. Soc. Instrum. Control Eng.
,
42
(
3
), pp.
212
221
.
13.
Chaplygin
,
S. A.
,
2008
, “
On the Theory of the Motion of Nonholonomic Systems: The Reducing-Multiplier Theorem
,”
Regular Chaotic Dyn.
,
13
(
4
), pp.
369
376
[Mat. Sb., 28(1), pp. 303–314 (1911)].
14.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
, (Translations of Mathematical Monographs, Vol. 33),
AMS
,
Providence, RI
.
15.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer-Verlag
,
New York
.
16.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2015
, “
The Stick–Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,”
ASME
Paper No. DSCC2015-9820.
17.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
, “
Stick-Slip Motion of the Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,”
ASME J. Comput. Nonlinear Dyn.
(submitted).
18.
Ruina
,
A.
,
1998
, “
Nonholonomic Stability Aspects of Piecewise Nonholonomic Systems
,”
Rep. Math. Phys.
,
42
, pp.
91
100
.
19.
Osborne
,
J. M.
, and
Zenkov
,
D. V.
,
2005
, “
Steering the Chaplygin Sleigh by a Moving Mass
,”
American Control Conference
.
20.
Lamb
,
H.
,
1945
,
Hydrodynamics
,
Dover
,
New York
.
21.
Milne-Thomson
,
L. M.
,
1996
,
Theoretical Hydrodynamics
,
Dover
,
New York
.
22.
Shashikanth
,
B. N.
,
2005
, “
Poisson Brackets for the Dynamically Interacting System of a 2D Rigid Cylinder and N Point Vortices: The Case of Arbitrary Smooth Cylinder Shapes
,”
Regular Chaotic Dyn.
,
10
(
1
), pp.
1
14
.
23.
Xiong
,
H.
,
2007
, “
Geometric Mechanics, Ideal Hydrodynamics, and the Locomotion of Planar Shape-Changing Aquatic Vehicles
,”
Ph.D. thesis
, University of Illinois at Urbana–Champaign, Champaign, IL.
24.
Pollard
,
B.
, and
Tallapragada
,
P.
, “
An Aquatic Robot Propelled by an Internal Rotor
,”
IEEE/ASME Trans. Mechatronics
(submitted).
You do not currently have access to this content.