Inspired by the designs of underwater gliders, hybrid autonomous underwater vehicles (AUVs) have emerged recently, which use internal actuators instead of control surfaces to control the heading angle and depth of the vehicles. In this paper, we focus on controlling the heading angle of a REMUS AUV by using an internal moving mass. We derive a nonlinear dynamical model of the vehicle with hydrodynamic forces and coupling between the vehicle and the internal moving mass. The model is used to study the stability of the horizontal-plane motion of the vehicle and to design a linear feedback law to stabilize its heading angle around a desired direction. Simulation results demonstrate that a controlled internal moving mass is able to fulfill the purpose of heading control.

References

References
1.
Meneses
,
A. M.
,
Li
,
B.
,
Dhanak
,
M.
, and
Su
,
T.-C.
,
2014
, “
Development of a Morphing AUV for Path and Station Keeping in Complex Current Environments
,”
24th International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers
, Busan, Korea, pp.
421
428
.
2.
Saunders
,
A.
, and
Nahon
,
M.
,
2002
, “
The Effect of Forward Vehicle Velocity on Through-Body AUV Tunnel Thruster Performance
,”
OCEANS'02 MTS/IEEE
, Biloxi, MS, Vol.
1
, pp.
250
259
.
3.
Palmer
,
A.
,
Hearn
,
G. E.
, and
Stevenson
,
P.
,
2008
, “
Modelling Tunnel Thrusters for Autonomous Underwater Vehicles
,”
Second IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, International Federation of Automatic Control (IFAC)
,
Killaloe
,
Ireland
, Vol.
2
, pp.
91
96
.
4.
Steenson
,
L.
,
Phillips
,
A.
,
Rogers
,
E.
,
Furlong
,
M.
, and
Turnock
,
S.
,
2011
, “
The Performance of Vertical Tunnel Thrusters on an Autonomous Underwater Vehicle Operating Near the Free Surface in Waves
,”
Second International Symposium on Marine Propulsors
,
Hamburg
,
Germany
.
5.
Alvarez
,
A.
,
Caffaz
,
A.
,
Caiti
,
A.
,
Casalino
,
G.
,
Gualdesi
,
L.
,
Turetta
,
A.
, and
Viviani
,
R.
,
2009
, “
Folaga: A Low-Cost Autonomous Underwater Vehicle Combining Glider and AUV Capabilities
,”
Ocean Eng.
,
36
(
1
), pp.
24
38
.
6.
Yoshida
,
H.
,
Hyakudome
,
T.
,
Ishibashi
,
S.
,
Ochi
,
H.
,
Watanabe
,
Y.
,
Sawa
,
T.
,
Nakano
,
Y.
,
Ohmika
,
S.
,
Sugesawa
,
M.
, and
Nakatani
,
T.
,
2012
, “
Development of the Cruising-AUV Jinbei
,”
OCEANS, 2012-Yeosu, IEEE
, Yeosu, Korea, pp.
1
4
.
7.
Santhakumar
,
M.
, and
Asokan
,
T.
,
2013
, “
Power Efficient Dynamic Station Keeping Control of a Flat-Fish Type Autonomous Underwater Vehicle Through Design Modifications of Thruster Configuration
,”
Ocean Eng.
,
58
, pp.
11
21
.
8.
Graver
,
J. G.
,
2005
, “
Underwater Gliders: Dynamics, Control and Design
,” Ph.D. thesis,
Princeton University
,
Princeton, NJ
.
9.
Eriksen
,
C. C.
,
Osse
,
T. J.
,
Light
,
R. D.
,
Wen
,
T.
,
Lehman
,
T. W.
,
Sabin
,
P. L.
,
Ballard
,
J. W.
, and
Chiodi
,
A. M.
,
2001
, “
Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
424
436
.
10.
Sherman
,
J.
,
Davis
,
R.
,
Owens
,
W.
, and
Valdes
,
J.
,
2001
, “
The Autonomous Underwater Glider ‘Spray’
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
437
446
.
11.
Webb
,
D. C.
,
Simonetti
,
P. J.
, and
Jones
,
C. P.
,
2001
, “
Slocum: An Underwater Glider Propelled by Environmental Energy
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
447
452
.
12.
Leonard
,
N. E.
, and
Graver
,
J. G.
,
2001
, “
Model-Based Feedback Control of Autonomous Underwater Gliders
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
633
645
.
13.
Caffaz
,
A.
,
Caiti
,
A.
,
Calabrò
,
V.
,
Casalino
,
G.
,
Guerrini
,
P.
,
Maguer
,
A.
,
Munafò
,
A.
,
Potter
,
J.
,
Tay
,
H.
, and
Turetta
,
A.
,
2012
, “
The Enhanced Folaga: A Hybrid AUV With Modular Payloads
,”
Further Advances in Unmanned Marine Vehicles
,
Institution of Engineering and Technology
,
London
, pp.
309
330
.
14.
Li
,
J.-W.
,
Song
,
B.-W.
, and
Shao
,
C.
,
2008
, “
Tracking Control of Autonomous Underwater Vehicles With Internal Moving Mass
,”
Acta Autom. Sin.
,
34
(
10
), pp.
1319
1323
.
15.
Marsden
,
J. E.
, and
Ratiu
,
T. S.
,
1999
,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
(Texts in Applied Mathematics),
2nd ed.
,
Springer
,
New York
.
16.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.
17.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Störmer–Verlet Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), pp.
1
11
.
18.
Leonard
,
N. E.
,
1997
, “
Stability of a Bottom-Heavy Underwater Vehicle
,”
Automatica
,
33
(
3
), pp.
331
346
.
19.
Woolsey
,
C. A.
,
2001
, “
Energy Shaping and Dissipation: Underwater Vehicle Stabilization Using Internal Rotors
,” Ph.D. thesis,
Princeton University
,
Princeton, NJ
.
20.
Woolsey
,
C. A.
, and
Leonard
,
N. E.
,
2002
, “
Stabilizing Underwater Vehicle Motion Using Internal Rotors
,”
Automatica
,
38
(
12
), pp.
2053
2062
.
21.
Tallapragada
,
P.
,
2015
, “
A Swimming Robot With an Internal Rotor as a Nonholonomic System
,”
American Control Conference (ACC), IEEE
, Chicago, IL, pp.
657
662
.
22.
Hong
,
E. Y.
, and
Chitre
,
M.
,
2015
,
Roll Control of an Autonomous Underwater Vehicle Using an Internal Rolling Mass
(Springer Tracts in Advanced Robotics), Vol.
105
,
Springer International Publishing
,
Berlin
, pp.
229
242
.
23.
Panish
,
R.
,
2009
, “
Dynamic Control Capabilities and Developments of the Bluefin Robotics AUV Fleet
,”
International Symposium on Unmanned Untethered Submersible Technology (UUST)
, pp.
23
26
.
24.
Prestero
,
T. J.
,
2001
, “
Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
25.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
,
New York
.
26.
Holm
,
D. D.
,
2011
,
Geometric Mechanics: Part II: Rotating, Translating and Rolling
,
2nd ed.
,
Imperial College Press
,
London
.
27.
Hoerner
,
S. F.
,
1965
,
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, Hoerner Fluid Dynamics
,
Midland Park
,
NJ
.
28.
Hoerner
,
S. F.
, and
Borst
,
H. V.
,
1985
,
Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift
,
Hoerner Fluid Dynamics
,
Brick Town, NJ
.
29.
Li
,
B.
, and
Su
,
T.-C.
,
2015
, “
Dynamics of REMUS AUV in Ocean Current
,”
25th International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers
,
Kona, Big Island
,
Hawaii
, pp.
530
537
.
This content is only available via PDF.
You do not currently have access to this content.