Based on the micropolar elasticity theory, a size-dependent rectangular element is proposed in this article to investigate the nonlinear mechanical behavior of plates. To this end, a novel three-dimensional formulation for the micropolar theory with the capability of being used easily in the finite element approach is developed first. Afterward, in order to study the micropolar plates, the obtained general formulation is reduced to that based on the Mindlin plate theory. Accordingly, a rectangular plate element is developed in which the displacements and microrotations are estimated by quadratic shape functions. To show the efficiency of the developed element, it is utilized to address the nonlinear bending problem of micropolar plates with different types of boundary conditions. It is revealed that the present finite element formulation can be efficiently employed for the nonlinear modeling of small-scale plates by considering the micropolar effects.

References

References
1.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
6
(1), pp.
51
78
.
2.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.
3.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
.
4.
Koiter
,
W. T.
,
1964
, “
Couple Stresses in the Theory of Elasticity
,”
Proc. K. Ned. Akad. Wet., (B)
,
67
, pp.
17
44
.
5.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
6.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
7.
Lazopoulos
,
K. A.
,
2009
, “
On Bending of Strain Gradient Elastic Micro-Plates
,”
Mech. Res. Commun.
,
36
(
7
), pp.
777
783
.
8.
Yin
,
L.
,
Qian
,
Q.
,
Wang
,
L.
, and
Xia
,
W.
,
2010
, “
Vibration Analysis of Microscale Plates Based on Modified Couple Stress Theory
,”
Acta Mech. Solida Sin.
,
23
(
5
), pp.
386
393
.
9.
Ke
,
L. L.
,
Wang
,
Y. S.
, and
Wang
,
Z. D.
,
2011
, “
Thermal Effect on Free Vibration and Buckling of Size-Dependent Microbeams
,”
Physica E
,
43
(
7
), pp.
1387
1393
.
10.
Akgöz
,
B.
, and
Civalek
,
Ö.
,
2011
, “
Strain Gradient Elasticity and Modified Couple Stress Models for Buckling Analysis of Axially Loaded Micro-Scaled Beams
,”
Int. J. Eng. Sci.
,
49
(
11
), pp.
1268
1280
.
11.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Pull-In Instability Analysis of Electrostatically Actuated Microplate With Rectangular Shape
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1085
1094
.
12.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Size-Dependent Pull-In Instability of Electrostatically Actuated Microbeam-Based MEMS
,”
J. Micromech. Microeng.
,
21
(
2
), p.
027001
.
13.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2012
, “
Pull-In Instability of Circular Plate MEMS: A New Model Based on Strain Gradient Elasticity Theory
,”
Int. J. Appl. Mech.
,
04
(
01
), p.
1250003
.
14.
Zhang
,
J.
, and
Fu
,
Y.
,
2012
, “
Pull-In Analysis of Electrically Actuated Viscoelastic Microbeams Based on a Modified Couple Stress Theory
,”
Meccanica
,
47
(
7
), pp.
1649
1658
.
15.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2012
, “
Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031009
.
16.
Simsek
,
M.
,
Kocatürk
,
T.
, and
Akbas
,
S. D.
,
2013
, “
Static Bending of a Functionally Graded Microscale Timoshenko Beam Based on the Modified Couple Stress Theory
,”
Compos. Struct.
,
95
, pp.
740
747
.
17.
Akgöz
,
B.
, and
Civalek
,
2013
, “
Buckling Analysis of Functionally Graded Microbeams Based on the Strain Gradient Theory
,”
Acta Mech.
,
224
(
9
), pp.
2185
2201
.
18.
Ansari
,
R.
,
Gholami
,
R.
,
Mohammadi
,
V.
, and
Faghih Shojaei
,
M.
,
2013
, “
Size-Dependent Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(2), p.
021015
.
19.
Belardinelli
,
P.
,
Lenci
,
S.
, and
Brocchini
,
M.
,
2014
, “
Modeling and Analysis of an Electrically Actuated Microbeam Based on Nonclassical Beam Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031016
.
20.
Ansari
,
R.
,
Gholami
,
R.
,
Faghih Shojaei
,
M.
,
Mohammadi
,
V.
, and
Sahmani
,
S.
,
2015
, “
Bending, Buckling and Free Vibration Analysis of Size-Dependent Functionally Graded Circular/Annular Microplates Based on the Modified Strain Gradient Elasticity Theory
,”
Eur. J. Mech. A/Solids
,
49
, pp.
251
267
.
21.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2015
, “
Internal Energy Transfer in Dynamical Behavior of Slightly Curved Shear Deformable Microplates
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041002
.
22.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Coupled Nonlinear Dynamics of Geometrically Imperfect Shear Deformable Extensible Microbeams
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041001
.
23.
Jabbari
,
G.
,
Shabani
,
R.
, and
Rezazadeh
,
G.
,
2016
, “
Nonlinear Vibrations of an Electrostatically Actuated Microresonator in an Incompressible Fluid Cavity Based on the Modified Couple Stress Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041029
.
24.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Shakouri
,
A. H.
, and
Rouhi
,
H.
,
2016
, “
Nonlinear Bending Analysis of First-Order Shear Deformable Microscale Plates Using a Strain Gradient Quadrilateral Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051014
.
25.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Théorie des corps déformables
,
A. Hermann et fils
,
Paris, France
.
26.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
,
1964
, “
Nonlinear Theory of Simple Microelastic Solid, I and II
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
189
203
.
27.
Eringen
,
A. C.
, and
Kafadar
,
C. B.
,
1976
, “
Polar Field Theories
,”
Continuum Physics
, Vol.
4
,
A. C.
Eringen
, ed.,
Academic Press
,
New York
, pp.
1
73
.
28.
Eringen
,
A. C.
,
2012
,
Microcontinuum Field Theories: I. Foundations and Solids
,
Springer Science and Business Media
,
New York
.
29.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
,
16
, p.
1
.
30.
Eringen
,
A. C.
,
1968
,
Theory of Micropolar Elasticity
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
621
729
.
31.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
,
1982
, “
Experimental Study of Micropolar and Couple Stress Elasticity in Compact Bone in Bending
,”
J. Biomech.
,
15
(
2
), pp.
91
98
.
32.
de Borst
,
R.
,
1991
, “
Simulation of Strain Localization: A Reappraisal of the Cosserat Continuum
,”
Eng. Comput.
,
8
(
4
), pp.
317
332
.
33.
de Borst
,
R.
,
1993
, “
A Generalisation of J2-Flow Theory for Polar Continua
,”
Comput. Methods Appl. Mech. Eng.
,
103
(
3
), pp.
347
362
.
34.
Ivanova
,
E. A.
,
Krivtsov
,
A. M.
,
Morozov
,
N. F.
, and
Firsova
,
A. D.
,
2003
, “
Description of Crystal Packing of Particles With Torque Interaction
,”
Mech. Solids
,
38
(
4
), pp.
76
88
.
35.
Pasternak
,
E.
, and
Mühlhaus
,
H. B.
,
2005
, “
Generalised Homogenisation Procedures for Granular Materials
,”
J. Eng. Math.
,
52
(
1
), pp.
199
229
.
36.
Grammenoudis
,
P.
, and
Tsakmakis
,
C.
,
2005
, “
Finite Element Implementation of Large Deformation Micropolar Plasticity Exhibiting Isotropic and Kinematic Hardening Effects
,”
Int. J. Numer. Methods Eng.
,
62
(
12
), pp.
1691
1720
.
37.
Bigoni
,
D.
, and
Drugan
,
W. J.
,
2007
, “
Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
741
753
.
38.
Grammenoudis
,
P.
, and
Tsakmakis
,
C.
,
2009
, “
Isotropic Hardening in Micropolar Plasticity
,”
Arch. Appl. Mech.
,
79
(
4
), pp.
323
334
.
39.
Goldberg
,
J. E.
,
Baluch
,
M. H.
,
Korman
,
T.
, and
Koh
,
S. L.
,
1974
, “
Finite Element Approach to Bending of Micropolar Plates
,”
Int. J. Numer. Methods Eng.
,
8
(
2
), pp.
311
321
.
40.
Trovalusci
,
P.
, and
Masiani
,
R.
,
2003
, “
Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials
,”
Int. J. Solids Struct.
,
40
(
5
), pp.
1281
1297
.
41.
Aganović
,
I.
,
Tambača
,
J.
, and
Tutek
,
Z.
,
2006
, “
Derivation and Justification of the Models of Rods and Plates From Linearized Three-Dimensional Micropolar Elasticity
,”
J. Elast.
,
84
(
2
), pp.
131
152
.
42.
Pompei
,
A.
, and
Rigano
,
M. A.
,
2006
, “
On the Bending of Micropolar Viscoelastic Plates
,”
Int. J. Eng. Sci.
,
44
(
18–19
), pp.
1324
1333
.
43.
Jeong
,
J.
, and
Neff
,
P.
,
2008
, “
Existence, Uniqueness and Stability in Linear Cosserat Elasticity for Weakest Curvature Conditions
,”
Math. Mech. Solids
,
15
(1), pp.
78
95
.
44.
Pietraszkiewicz
,
W.
, and
Eremeyev
,
V.
,
2009
, “
On Natural Strain Measures of the Non-Linear Micropolar Continuum
,”
Int. J. Solids Struct.
,
46
(
3–4
), pp.
774
787
.
45.
Kvasov
,
R.
, and
Steinberg
,
L.
,
2013
, “
Numerical Modeling of Bending of Micropolar Plates
,”
Thin-Walled Struct.
,
69
, pp.
67
78
.
46.
Bhattacharyya
,
A.
, and
Mukhopadhyay
,
B.
,
2013
, “
Study of Linear Isotropic Micro-Polar Plate in an Asymptotic Approach
,”
Comput. Math. Appl.
,
66
(
6
), pp.
1047
1057
.
47.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2014
, “
Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials
,”
Int. J. Plast.
,
63
, pp.
3
17
.
48.
Sargsyan
,
A. H.
, and
Sargsyan
,
S. H.
,
2014
, “
Dynamic Model of Micropolar Elastic Thin Plates With Independent Fields of Displacements and Rotations
,”
J. Sound Vib.
,
333
(
18
), pp.
4354
4375
.
49.
Ansari
,
R.
,
Mohammadi
,
V.
,
Faghih Shojaei
,
M.
, and
Rouhi
,
H.
,
2015
, “
Thermal Postbuckling Analysis of Nanoscale Films Based on a Non-Classical Finite Element Approach
,”
J. Therm. Stresses
,
38
(
6
), pp.
651
664
.
50.
Ansari
,
R.
,
Faghih Shojaei
,
M.
,
Ebrahimi
,
F.
, and
Rouhi
,
H.
,
2016
, “
A Novel Size-Dependent Microbeam Element Based on Mindlin's Strain Gradient Theory
,”
Eng. Comput.
,
32
(
1
), pp.
99
108
.
51.
Ansari
,
R.
,
Faghih Shojaei
,
M.
, and
Rouhi
,
H.
,
2015
, “
Small-Scale Timoshenko Beam Element
,”
Eur. J. Mech. A Solids
,
53
, pp.
19
33
.
52.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(4), pp.
291
323
.
53.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
54.
Altenbach
,
J.
,
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2010
, “
On Generalized Cosserat-Type Theories of Plates and Shells: A Short Review and Bibliography
,”
Arch. Appl. Mech.
,
80
(
1
), pp.
73
92
.
55.
Li
,
L.
, and
Xie
,
S.
,
2004
, “
Finite Element Method for Linear Micropolar Elasticity and Numerical Study of Some Scale Effects Phenomena in MEMS
,”
Int. J. Mech. Sci.
,
46
(
11
), pp.
1571
1587
.
56.
Godio
,
M.
,
Stefanou
,
I.
,
Sab
,
K.
, and
Sulem
,
J.
,
2015
, “
Dynamic Finite Element Formulation for Cosserat Elastic Plates
,”
Int. J. Numer. Methods Eng.
,
101
(
13
), pp.
992
1018
.
57.
Wheel
,
M. A.
,
2008
, “
A Control Volume-Based Finite Element Method for Plane Micropolar Elasticity
,”
Int. J. Numer. Methods Eng.
,
75
(
8
), pp.
992
1006
.
58.
Pietraszkiewicz
,
W.
, and
Eremeyev
,
V. A.
,
2009
, “
On Vectorially Parameterized Natural Strain Measures of the Non-Linear Cosserat Continuum
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2477
2480
.
59.
Lakes
,
R.
,
1986
, “
Experimental Microelasticity of Two Porous Solids
,”
Int. J. Solids Struct.
,
22
(
1
), pp.
55
63
.
60.
Eringen
,
A. C.
,
1967
, “
Theory of Micropolar Plates
,”
Z. Angew. Math. Phys.
,
18
(
1
), pp.
12
30
.
61.
Altenbach
,
H.
, and
Eremeyev
,
V. A.
,
2009
, “
On the Linear Theory of Micropolar Plates
,”
Z. Angew. Math. Mech.
89
(
4
), pp.
242
256
.
62.
Chróscielewski
,
J.
, and
Witkowski
,
W.
,
2010
, “
On Some Constitutive Equations for Micropolar Plates
,”
Z. Angew. Math. Mech.
90
(
1
), pp.
53
64
.
63.
Chróscielewski
,
J.
, and
Witkowski
,
W.
,
2011
, “
FEM Analysis of Cosserat Plates and Shells Based on Some Constitutive Relations
,”
Z. Angew. Math. Mech.
,
91
(
5
), pp.
400
412
.
64.
Chróscielewski
,
J.
,
Pietraszkiewicz
,
W.
, and
Witkowski
,
W.
,
2010
, “
On Shear Correction Factors in the Non-Linear Theory of Elastic Shells
,”
Int. J. Solids Struct.
,
47
(
25–26
), pp.
3537
3545
.
65.
Gruttmann
,
F.
, and
Wagner
,
W.
,
2004
, “
A Stabilized One-Point Integrated Quadrilateral Reissner–Mindlin Plate Element
,”
Int. J. Numer. Meth. Eng.
,
61
(
13
), pp.
2273
2295
.
66.
Panasz
,
P.
, and
Wisniewski
,
K.
,
2008
, “
Nine-Node Shell Elements With 6 dofs/Node Based on Two-Level Approximations. Part I: Theory and Linear Tests
,”
Finite Elem. Anal. Des.
,
44
(
12–13
), pp.
784
796
.
You do not currently have access to this content.