Radial basis function (RBF) has been found useful for solving coupled sine-Gordon equation with initial and boundary conditions. Though this approach produces moderate accuracy in a larger domain, it requires more grid points. In the present study, we develop an alternative numerical scheme for solving one-dimensional coupled sine-Gordon equation to improve accuracy and to reduce grid points. To achieve these objectives, we make use of a wavelet scheme and solve coupled sine-Gordon equation. Based on the numerical results from the wavelet-based scheme, we conclude that our proposed method is more efficient than the radial basic function method in terms of accuracy.

References

References
1.
Khusnutdinova
,
K. R.
, and
Pelinovsky
,
D. E.
,
2003
, “
On the Exchange of Energy in Coupled Klein Gordon Equations
,”
Wave Motion
,
38
(
1
), pp.
1
10
.
2.
Zhang
,
C. T.
,
1987
, “
Soliton Excitations in Deoxyribonucleic Acid (DNA) Double Helices
,”
Phys. Rev. A.
,
35
(
2
), pp.
886
891
.
3.
Ray
,
S. S.
,
2006
, “
A Numerical Solution of the Coupled Sine-Gordon Equation Using the Modified Decomposition Method
,”
App. Math. Comput.
,
175
(
2
), pp.
1046
1054
.
4.
Ilati
,
M.
, and
Dehghan
,
M.
,
2015
, “
The Use of Radial Basis Functions (RBFs) Collocation and RBF-QR Methods for Solving the Coupled Nonlinear Sine-Gordon Equations
,”
Eng. Anal. Boundary Elem.
,
52
, pp.
99
109
.
5.
Zhao
,
Y. M.
,
2014
, “
Exact Solutions of Coupled Sine-Gordon Equations Using the Simplest Equation Method
,”
J. Appl. Math.
,
2014
, p.
534346
.
6.
Batiha
,
B.
,
Noorani
,
M. S. M.
, and
Hashim
,
I.
,
2007
, “
Approximate Analytical Solution of the Coupled Sine-Gordon Equation Using the Variational Iteration Method
,”
Phys. Scr.
,
76
(
5
), pp.
445
448
.
7.
Gupta
,
A. K.
, and
Ray
,
S. S.
,
2015
, “
Numerical Treatment for the Solution of Fractional Fifth-Order Sawada Kotera Equation Using Second Kind Chebyshev Wavelet Method
,”
Appl. Math. Model.
,
39
(
17
), pp.
5121
5130
.
8.
Gupta
,
A. K.
, and
Ray
,
S. S.
,
2016
, “
A Novel Attempt for Finding Comparatively Accurate Solution for Sine-Gordon Equation Comprising Riesz Space Fractional Derivative
,”
Math. Methods Appl. Sci.
,
39
(
11
), pp.
2871
2882
.
9.
Gupta
,
A. K.
, and
Ray
,
S. S.
,
2015
, “
Numerical Treatment for Investigation of Squeezing Unsteady Nanofluid Flow Between Two Parallel Plates
,”
Powder Technol.
,
279
, pp.
282
289
.
10.
Kaur
,
H.
,
Mittal
,
R. C.
, and
Mishra
,
V.
,
2014
, “
Haar Wavelet Solutions of Nonlinear Oscillator Equations
,”
Appl. Math. Model.
,
38
(
21–22
), pp.
4958
4971
.
11.
Saeed
,
U.
, and
Rehman
,
M. U.
,
2013
, “
Haar Wavelet-Quasilinearization Technique for Fractional Nonlinear Differential Equations
,”
Appl. Math. Comput.
,
220
, pp.
630
648
.
12.
Celik
,
I.
,
2012
, “
Haar Wavelet Method for Solving Generalized Burgers–Huxley Equation
,”
Arab J. Math. Sci.
,
18
(
1
), pp.
25
37
.
13.
Islam
,
S.
,
Aziz
,
I.
,
Al-Fhaid
,
A. S.
, and
Shah
,
A.
,
2013
, “
A Numerical Assessment of Parabolic Partial Differential Equations Using Haar and Legendre Wavelets
,”
Appl. Math. Model.
,
37
(
23
), pp.
9455
9481
.
14.
Jiwari
,
R.
,
2012
, “
A Haar Wavelet Quasilinearization Approach for Numerical Simulation of Burgers' Equation
,”
Comput. Phys. Commun.
,
183
(
11
), pp.
2413
2423
.
15.
Kumar
,
M.
, and
Pandit
,
S.
,
2014
, “
A Composite Numerical Scheme for the Numerical Simulation of Coupled Burgers' Equation
,”
Comput. Phys. Commun.
,
185
(
3
), pp.
809
817
.
16.
Ray
,
S. S.
, and
Gupta
,
A. K.
,
2014
, “
Comparative Analysis of Variational Iteration Method and Haar Method for the Numerical Solutions of Burgers-Huxley and Huxley Equations
,”
J. Math. Chem.
,
52
(
4
), pp.
1066
1080
.
17.
Vijesh
,
V. A.
, and
Kumar
,
K. H.
,
2015
, “
Wavelet Based Numerical Simulation of Non Linear Klein/Sine Gordon Equation
,”
J. Combinatorics Syst. Sci.
,
40
(
1
), pp.
225
244
.
18.
Changqing
,
Y.
, and
Jianhua
,
H.
,
2013
, “
Chebyshev Wavelets Method for Solving Bratu's Problem
,”
J. Bound Value Probl.
,
2013
, p.
142
.
19.
Babolian
,
E.
, and
Fattahzadeh
,
F.
,
2007
, “
Numerical Solution of Differential Equations by Using Chebyshev Wavelet Operational Matrix of Integration
,”
Appl. Math. Comput.
,
188
(
1
), pp.
417
426
.
20.
Heydari
,
M. H.
,
Hooshmandasl
,
M. R.
, and
Ghaini
,
F. M. M.
,
2014
, “
A New Approach of the Chebyshev Wavelets Method for Partial Differential Equations With Boundary Conditions of the Telegraph Type
,”
Appl. Math. Model.
,
38
(
5–6
), pp.
1597
1606
.
21.
Adibi
,
H.
, and
Assari
,
P.
,
2010
, “
Chebyshev Wavelet Method for Numerical Solution of Fredholm Integral Equations of the First Kind
,”
Math. Probl. Eng.
,
2010
, p.
138408
.
22.
Liu
,
N.
, and
Lin
,
E. B.
,
2009
, “
Legendre Wavelet Method for Numerical Solutions of Partial Differential Equations
,”
Numer. Methods Partial Differ. Equations
,
26
(
1
), pp.
81
94
.
You do not currently have access to this content.