One of the major challenges in dynamics of multibody systems is to handle redundant constraints appropriately. The box friction model is one of the existing approaches to formulate the contact and friction phenomenon as a mixed linear complementarity problem (MLCP). In this setting, the contact redundancy can be handled by relaxing the constraints, but such a technique might suffer from certain drawbacks, specially in the case of large number of redundant constraints. Most of the common pivoting algorithms used to solve the resulting mixed complementarity problem might not converge when the relaxation terms are chosen as small as they should be. To overcome the aforementioned shortcoming, we propose a novel approach which takes advantage of the sparse structure of the formulated MLCP. This novel approach reduces the sensitivity of the solution of the problem to the relaxation terms and decreases the number of required pivots to obtain the solution, leading to shorter computational times. Furthermore, as a result of the proposed approach, much smaller relaxation terms can be used while the solution algorithms converge.

References

References
1.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.
2.
Brogliato
,
B.
,
Ten Dam
,
A.
,
Paoli
,
L.
,
Génot
,
F.
, and
Abadie
,
M.
,
2002
, “
Numerical Simulation of Finite Dimensional Multibody Nonsmooth Mechanical Systems
,”
App. Mech. Rev.
,
55
(
2
), pp.
107
150
.
3.
Moreau
,
J.
,
1966
, “
Quadratic Programming in Mechanics: Dynamics of One Sided Constraints
,”
SIAM J. Control
,
4
(
1
), pp.
153
158
.
4.
Lötstedt
,
P.
,
1982
, “
Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints
,”
SIAM J. Appl. Math.
,
42
(
2
), pp.
281
296
.
5.
Anitescu
,
M.
, and
Tasora
,
A.
,
2010
, “
An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics
,”
Comput. Optim. Appl.
,
47
(
2
), pp.
207
235
.
6.
Lötstedt
,
P.
,
1981
, “
Coulomb Friction in Two-Dimensional Rigid Body Systems
,”
J. Appl. Math. Mech.
,
61
(12), pp.
605
615
.
7.
Trinkle
,
J.
,
Pang
,
J.
,
Sudarsky
,
S.
, and
Lo
,
G.
,
1997
, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Z. Angew. Math. Mech.
,
77
(
4
), pp.
267
279
.
8.
Baraff
,
D.
,
1989
, “
Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid Bodies
,”
Comput. Graphics (SIGGRAPH’89 Proc.)
,
23
(
3
), pp.
223
232
.
9.
Baraff
,
D.
,
1991
, “
Coping With Friction for Non-Penetrating Rigid Body Simulation
,”
Comput. Graphics (SIGGRAPH’91 Proc.)
,
25
(
4
), pp.
31
40
.
10.
Baraff
,
D.
,
1993
, “
Issues in Computing Contact Forces for Nonpenetrating Rigid Bodies
,”
Algorithmica
,
10
, pp.
292
352
.
11.
Anitescu
,
M.
, and
Potra
,
F.
,
1997
, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems
,”
Nonlinear Dyn.
,
14
(
3
), pp.
231
247
.
12.
Anitescu
,
M.
,
Tasora
,
A.
, and
Stewart
,
D.
,
1999
, “
Time-Stepping for Three-Dimensional Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
177
(3–4), pp.
183
197
.
13.
Sauer
,
J.
, and
Schömer
,
E.
,
1998
, “
A Constraint-Based Approach to Rigid Body Dynamics for Virtual Reality Applications
,”
ACM
Symposium on Virtual Reality Software and Technology
, pp.
153
162
.
14.
Son
,
W.
,
Trinkle
,
J.
, and
Amato
,
N.
,
2001
, “
Hybrid Dynamic Simulation of Rigid-Body Contact With Coulomb Friction
,”
IEEE
International Conference on Robots and Automation
, pp.
1376
1381
.
15.
Stewart
,
D.
,
2000
, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
,
42
(
1
), pp.
3
39
.
16.
Anitescu
,
M.
, and
Hart
,
G. D.
,
2004
, “
A Fixed-Point Iteration Approach for Multibody Dynamics With Contact and Small Friction
,”
Math. Program.
,
101
(
1
), pp.
3
32
.
17.
Stewart
,
D.
, and
Trinkle
,
J.
,
1996
, “
An Implicit Time-Stepping Scheme for Rigid-Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
,
39
(
15
), pp.
2673
2691
.
18.
Williams
,
J.
,
Lu
,
Y.
, and
Trinkle
,
J. C.
,
2014
, “
Complementarity Based Contact Model for Geometrically Accurate Treatment of Polytopes in Simulation
,”
ASME
Paper No. DETC2014-35231.
19.
Cottle
,
R. W.
, and
Dantzig
,
G.
,
1968
, “
Complementarity Pivot Theory of Mathematical Programming
,”
Linear Algebra Appl.
,
1
(
1
), pp.
103
125
.
20.
Anitescu
,
M.
, and
Tasora
,
A.
,
2010
, “
An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics
,”
Comput. Optim. Appl.
,
47
(
2
), pp.
207
235
.
21.
Jean
,
M.
,
1999
, “
The Non-Smooth Contact Dynamics Method
,”
Comput. Methods Appl. Mech. Eng.
,
177
(
3–4
), pp.
235
257
.
22.
Moreau
,
J.
, and
Jean
,
M.
,
1996
, “
Numerical Treatment of Contact and Friction: The Contact Dynamics Method
,”
Third Biennial Joint Conference on Engineering Systems and Analysis
, pp.
201
208
.
23.
Jourdan
,
F.
,
Alart
,
P.
, and
Jean
,
M.
,
1998
, “
A Gauss–Seidel Like Algorithm to Solve Frictional Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
155
(1–2), pp.
31
47
.
24.
Schittkowski
,
K.
,
2006
, “
NLPQLP: A Fortran Implementation of Sequential Quadratic Programming Algorithm With Distributed and Non-Monotone Line Search—Users Guide
,” Department of Computer Science, University of Bayreuth, Bayreuth, Germany.
25.
Lacoursiere
,
C.
,
2006
, “
A Regularized Time Stepper for Multibody Systems
,” Department of Computing Science, Umeå University, Umeå, Sweden, Report No. UMINF 06.04.
26.
Brogliato
,
B.
, and
Goeleven
,
D.
,
2014
, “
Singular Mass Matrix and Redundant Constraints in Unilaterally Constrained Lagrangian and Hamiltonian Systems
,”
Multibody Syst. Dyn.
,
35
(
1
), pp.
39
61
.
27.
Blumentals
,
A.
,
Brogliato
,
B.
, and
Bertails-Descoubes
,
F.
,
2014
, “
The Contact Problem in Lagrangian Systems Subject to Bilateral and Unilateral Constraints, With or Without Sliding Coulomb's Friction: A Tutorial
,”
Multibody Syst. Dyn.
,
38
(1), pp. 43–76.
28.
Higham
,
N. J.
,
2002
,
Accuracy and Stability of Numerical Algorithms
,
2nd ed.
,
SIAM
,
Philadelphia, PA
.
29.
Glocker
,
C.
,
2001
,
Set-Valued Force Laws
,
Springer
,
Troy, NY
.
30.
Cottle
,
R. W.
,
Pang
,
J.-S.
, and
Stone
,
R. E.
,
1992
,
The Linear Complementarity Problem
,
Academic Press
,
Boston, MA
.
31.
Júdice
,
J.
, and
Pires
,
F. M.
,
1994
, “
A Block Principal Pivoting Algorithm for Large-Scale Strictly Monotone Linear Complementarity Problems
,”
Comput. Oper. Res.
,
21
(
5
), pp.
587
596
.
32.
Murty
,
K.
,
1988
,
Linear Complementarity, Linear and Nonlinear Programming
,
Heldermann
,
Berlin
.
33.
Bayo
,
E.
,
Jimenez
,
J. M.
,
Serna
,
M. A.
, and
Bastero
,
J. M.
,
1994
, “
Penalty Based Hamiltonian Equations for Dynamic Analysis of Constrained Mechanical Systems
,”
Mech. Mach. Theory
,
29
(
5
), pp.
725
737
.
34.
Blajer
,
W.
,
2002
, “
Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy
,”
Multibody Syst. Dyn.
,
8
(
2
), pp.
141
159
.
35.
Ruzzeh
,
B.
, and
Kövecses
,
J.
,
2011
, “
A Penalty Formulation for Dynamics Analysis of Redundant Mechanical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021008
.
36.
Callen
,
P.
,
2014
, “
Robotic Transfer and Interfaces for External ISS Payloads
,” 3rd Annual
ISS
Research and Development Conference
, Paper No. JSC-CN-31354.
You do not currently have access to this content.