In recent years, topology optimization has been used for optimizing members of flexible multibody systems to enhance their performance. Here, an extension to existing topology optimization schemes for flexible multibody systems is presented in which a more accurate model of revolute joints and bearing domains is included. This extension is of special interest since a connection between flexible members in a multibody system using revolute joints is seen in many applications. Moreover, the modeling accuracy of the bearing area is shown to be influential on the shape of the optimized structure. In this work, the flexible bodies are incorporated in the multibody simulation using the floating frame of reference formulation, and their elastic deformation is approximated using global shape functions calculated in the model order reduction analysis. The modeling of revolute joints using Hertzian contact law is incorporated in this framework by introducing a corrector load in the bearing model. Furthermore, an application example of a flexible multibody system with revolute joints is optimized for minimum value of compliance, and a comparative study of the optimization result is performed with an equivalent system which is modeled with nonlinear finite elements.

References

References
1.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.
2.
Collard
,
J. F.
,
Fisette
,
P.
, and
Duysinx
,
P.
,
2005
, “
Contribution to the Optimization of Closed-Loop Multibody Systems: Application to Parallel Manipulators
,”
Multibody Syst. Dyn.
,
13
(
1
), pp.
69
84
.
3.
Häußler
,
P.
, and
Albers
,
A.
,
2005
, “
Shape Optimization of Structural Parts in Dynamic Mechanical Systems Based on Fatigue Calculations
,”
Struct. Multidiscip. Optim.
,
29
(
5
), pp.
361
373
.
4.
Held
,
A.
, and
Seifried
,
R.
,
2013
, “
Gradient-Based Optimization of Flexible Multibody Systems Using the Absolute Nodal Coordinate Formulation
,”
ECCOMAS Thematic Conference Multibody Dynamics
, pp. 397–398.
5.
Brüls
,
O.
,
Lemaire
,
E.
,
Duysinx
,
P.
, and
Eberhard
,
P.
,
2011
, “
Optimization of Multibody Systems and Their Structural Components
,”
Multibody Syst. Dyn.
,
23
, pp.
49
68
.
6.
Albers
,
A.
,
Ottnad
,
J.
,
Weiler
,
H.
, and
Häußler
,
P.
,
2007
, “
Methods for Lightweight Design of Mechanical Components in Humanoid Robots
,”
7th IEEE-RAS International Conference on Humanoid Robots
, pp.
609
615
.
7.
Häußler
,
P.
,
Emmrich
,
D.
,
Müller
,
O.
,
Ilzhöfer
,
B.
,
Nowicki
,
L.
, and
Albers
,
A.
,
2001
, “
Automated Topology Optimization of Flexible Components in Hybrid Finite Element Multi-Body Systems Using ADAMS/Flex and MSc. Construct
,”
ADAMS European User's Conference
, Berchtesgaden, Germany, Nov. 14–15.
8.
Seifried
,
R.
, and
Held
,
A.
,
2012
, “
Optimal Design of Lightweight Machines Using Flexible Multibody System Dynamics
,”
ASME
Paper No. DETC2012-70972.
9.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
10.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Prentice-Hall, Upper Saddle River, NJ
.
11.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
, New York.
12.
Dubowsky
,
S.
, and
Gardner
,
T. N.
,
1975
, “
Dynamic Interactions of Link Elasticity and Clearance Connections in Planar Mechanical Systems
,”
ASME J. Eng. Ind.
,
97
(
2
), pp.
652
661
.
13.
Flores
,
P.
,
2010
, “
A Parametric Study on the Dynamic Response of Planar Multibody Systems With Multiple Clearance Joints
,”
Nonlinear Dyn.
,
61
(
4
), pp.
633
653
.
14.
Flores
,
P.
, and
Ambrosio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
(
17–19
), pp.
1359
1369
.
15.
Flores
,
P.
,
Ambrosio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.
16.
Flores
,
P.
,
Koshy
,
C. S.
,
Lankarani
,
H. M.
,
Ambrósio
,
J.
, and
Claro
,
J. C. P.
,
2011
, “
Numerical and Experimental Investigation on Multibody Systems With Revolute Clearance Joints
,”
Nonlinear Dyn.
,
65
(
4
), pp.
383
398
.
17.
Qi
,
Z.
,
Wang
,
G.
, and
Zhang
,
Z.
,
2015
, “
Contact Analysis of Deep Groove Ball Bearings in Multibody Systems
,”
Multibody Syst. Dyn.
,
33
(
2
), pp.
115
141
.
18.
Ravn
,
P.
,
1998
, “
A Continuous Analysis Method for Planar Multibody Systems With Joint Clearance
,”
Multibody Syst. Dyn.
,
2
(
1
), pp.
1
24
.
19.
Erkaya
,
S.
,
Doğan
,
S.
, and
Ulus
,
Ş.
,
2015
, “
Effects of Joint Clearance on the Dynamics of a Partly Compliant Mechanism: Numerical and Experimental Studies
,”
Mech. Mach. Theory
,
88
, pp.
125
140
.
20.
Li
,
Y.
,
Chen
,
G.
,
Sun
,
D.
,
Gao
,
Y.
, and
Wang
,
K.
,
2016
, “
Dynamic Analysis and Optimization Design of a Planar Slider–Crank Mechanism With Flexible Components and Two Clearance Joints
,”
Mech. Mach. Theory
,
99
, pp.
37
57
.
21.
Varedi
,
S.
,
Daniali
,
H.
,
Dardel
,
M.
, and
Fathi
,
A.
,
2015
, “
Optimal Dynamic Design of a Planar Slider–Crank Mechanism With a Joint Clearance
,”
Mech. Mach. Theory
,
86
, pp.
191
200
.
22.
Müller
,
O.
,
Häußler
,
P.
,
Lux
,
R.
,
Ilzhöfer
,
B.
, and
Albers
,
A.
,
1999
, “
Automated Coupling of MDI/ADAMS and MSc.Construct for the Topology and Shape Optimization of Flexible Mechanical Systems
,”
International ADAMS Users' Conference
, Berlin, Germany, Nov. 17–19.
23.
Seifried
,
R.
,
Moghadasi
,
A.
, and
Held
,
A.
,
2015
, “
Analysis of Design Uncertainties in Structurally Optimized Lightweight Machines
,”
Procedia IUTAM
,
13
, pp.
71
81
.
24.
Seifried
,
R.
,
Held
,
A.
, and
Moghadasi
,
A.
,
2014
, “
Topology Optimization of Members of Flexible Multibody Systems Using the Floating Frame of Reference Approach
,”
Third Joint International Conference on Multibody System Dynamics
, Busan, Korea, June 30–July 3.
25.
Moghadasi
,
A.
,
Held
,
A.
, and
Seifried
,
R.
,
2015
, “
Topology Optimization of Bearing Domains in Flexible Multibody Systems
,”
ECCOMAS Thematic Conference Multibody Dynamics
, Barcelona, Spain, June 6–7.
26.
Seifried
,
R.
,
2014
,
Dynamics of Underactuated Multibody Systems—Modeling, Control and Optimal Design
,
Springer
, Heidelberg, Germany.
27.
Held
,
A.
,
Nowakowski
,
C.
,
Moghadasi
,
A.
,
Seifried
,
R.
, and
Eberhard
,
P.
,
2016
, “
On the Influence of Model Reduction Techniques in Topology Optimization of Flexible Multibody Systems Using the Floating Frame of Reference Approach
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
67
80
.
28.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
Am. Inst. Aeronaut. Astronaut.
,
6
(
7
), pp.
1313
1319
.
29.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization Theory, Methods and Applications
,
Springer
,
Berlin
.
30.
Pedersen
,
N.
,
2000
, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
31.
Olhoff
,
N.
, and
Du
,
J.
,
2005
, “
Topological Design of Continuum Structures Subjected to Forced Vibration
,”
6th World Congresses of Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30–June 3.
32.
Kang
,
B. S.
,
Park
,
G. J.
, and
Arora
,
J. S.
,
2005
, “
Optimization of Flexible Multibody Dynamic Systems Using the Equivalent Static Load Method
,”
Am. Inst. Aeronaut. Astronaut.
,
43
(
4
), pp.
846
852
.
33.
Held
,
A.
,
2014
, “
On Structural Optimization of Flexible Multibody Systems
,” Ph.D. thesis, University of Stuttgart, Shaker Verlag, Aachen, Germany.
34.
Moghadasi
,
A.
,
Held
,
A.
, and
Seifried
,
R.
,
2014
, “
Topology Optimization of Flexible Multibody Systems Using Equivalent Static Loads and Displacement Fields
,”
PAMM Proceedings in Applied Mathematics and Mechanics
, pp. 35–36.
35.
Knight
,
N. F. J.
,
2006
, “
Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures
,”
General Dynamics—Advanced Information Systems
, NASA Technical Report No. NASA/CR-2006-214529.
36.
Hertz
,
H.
,
1882
, “
Über die Berührung fester elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
(in German).
37.
Johnson
,
K.
,
1987
,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
38.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
39.
Alves
,
J.
,
Peixinho
,
N.
,
da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
40.
Banerjee
,
A.
,
Chanda
,
A.
, and
Das
,
R.
,
2016
, “
Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review
,”
Arch. Comput. Methods Eng.
, (published online), pp.
1
26
.
You do not currently have access to this content.