Single-degree-of-freedom (single-DOF) nonlinear mechanical systems under periodic excitation may possess multiple coexisting stable periodic solutions. Depending on the application, one of these stable periodic solutions is desired. In energy-harvesting applications, the large-amplitude periodic solutions are preferred, and in vibration reduction problems, the small-amplitude periodic solutions are desired. We propose a method to design an impulsive force that will bring the system from an undesired to a desired stable periodic solution, which requires only limited information about the applied force. We illustrate our method for a single-degree-of-freedom model of a rectangular plate with geometric nonlinearity, which takes the form of a monostable forced Duffing equation with hardening nonlinearity.

References

References
1.
Moon
,
F.
, and
Holmes
,
P.
,
1979
, “
A Magnetoelastic Strange Attractor
,”
J. Sound Vib.
,
65
(
2
), pp.
275
296
.
2.
De Pasquale
,
G.
,
Som
,
A.
, and
Zampieri
,
N.
,
2012
, “
Design, Simulation, and Testing of Energy Harvesters With Magnetic Suspensions for the Generation of Electricity From Freight Train Vibrations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041011
.
3.
Masana
,
R.
, and
Daqaq
,
M.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.
4.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
5.
Daqaq
,
M.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
6.
Ibrahim
,
R.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
35
), pp.
371
452
.
7.
Ikeda
,
T.
,
2010
, “
Bifurcation Phenomena Caused by Multiple Nonlinear Vibration Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
021012
.
8.
Khalil
,
H.
,
2000
,
Nonlinear Systems
,
3rd, ed.
,
Pearson Education
,
Upper Saddle River, NJ
.
9.
Ast
,
A.
, and
Eberhard
,
P.
,
2009
, “
Active Vibration Control for a Machine Tool With Parallel Kinematics and Adaptronic Actuator
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
3
), p.
031004
.
10.
Nijmeijer
,
H.
, and
Berghuis
,
H.
,
1995
, “
On Lyapunov Control of the Duffing Equation
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
,
42
(
8
), pp.
473
477
.
11.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
12.
Liu
,
Y.
,
Wiercigroch
,
M.
,
Ing
,
J.
, and
Pavlovskaia
,
E.
,
2013
, “
Intermittent Control of Coexisting Attractors
,”
Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
,
371
(
1993
), p.
20120428
.
13.
van de Vorst
,
E.
,
van Campen
,
D.
,
Fey
,
R.
, and
de Kraker
,
A.
,
1996
, “
Determination of Global Stability of Steady-State Solutions of a Beam System With Discontinuous Support Using Manifolds
,”
Chaos Solitons Fractals
,
7
(
1
), pp.
61
75
.
14.
Parker
,
T.
, and
Chua
,
L.
,
1989
,
Numerical Algorithms for Chaotic Systems
,
Springer
,
New York
.
15.
Bihari
,
I.
,
1956
, “
A Generalization of a Lemma of Bellman and Its Application to Uniqueness Problems of Differential Equations
,”
Acta Math. Acad. Sci. Hung.
,
7
(
1
), pp.
81
94
.
16.
LaSalle
,
J.
,
1949
, “
Uniqueness Theorems and Successive Approximations
,”
Ann. Math.
,
50
(
2
), pp.
722
730
.
17.
Amabili
,
M.
,
2008
,
Nonlinear Vibrations and Stability of Shells and Plates
,
Cambridge University Press
,
Cambridge, UK
.
18.
Leissa
,
A.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.
19.
Blevins
,
R.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Van Nostrand Reinhold Company
,
London
.
20.
Fey
,
R.
,
Mallon
,
N.
,
Kraaij
,
C.
, and
Nijmeijer
,
H.
,
2011
, “
Nonlinear Resonances in an Axially Excited Beam Carrying a Top Mass: Simulations and Experiments
,”
Nonlinear Dyn.
,
66
(
3
), pp.
285
302
.
21.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Yu. A.
,
Meijer
,
H. G. E.
, and
Sautois
,
B.
,
2008
, “
New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems
,”
Math. Comput. Model. Dyn. Syst.
,
14
(
2
), pp.
147
175
.
You do not currently have access to this content.