We study the dynamics of targeted energy transfers in suppressing chatter instability in a single-degree-of-freedom (SDOF) machine tool system. The nonlinear regenerative (time-delayed) cutting force is a main source of machine tool vibrations (chatter). We introduce an ungrounded nonlinear energy sink (NES) coupled to the tool, by which energy transfers from the tool to the NES and efficient dissipation can be realized during chatter. Studying variations of a transition curve with respect to the NES parameters, we analytically show that the location of the Hopf bifurcation point is influenced only by the NES mass and damping coefficient. We demonstrate that application of a well-designed NES renders the subcritical limit cycle oscillations (LCOs) into supercritical ones, followed by Neimark–Sacker and saddle-node bifurcations, which help to increase the stability margin in machining. Numerical and asymptotic bifurcation analyses are performed and three suppression mechanisms are identified. The asymptotic stability analysis is performed to study the domains of attraction for these suppression mechanisms which exhibit good agreement with the bifurcations sets obtained from the numerical continuation methods. The results will help to design nonlinear energy sinks for passive control of regenerative instabilities in machining.

References

References
1.
Dombovari
,
Z.
,
Barton
,
D. A. W.
,
Wilson
,
R. E.
, and
Stépán
,
G.
,
2011
, “
On the Global Dynamics of Chatter in the Orthogonal Cutting Model
,”
Int. J. Nonlinear Mech.
,
46
(
1
), pp.
330
338
.
2.
Nayfeh
,
A. H.
, and
Nayfeh
,
N. A.
,
2011
, “
Analysis of the Cutting Tool on a Lathe
,”
Nonlinear Dyn.
,
63
(
3
), pp.
395
416
.
3.
Kalmár-Nagy
,
T.
,
Stépán
,
G.
, and
Moon
,
F. C.
,
2001
, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
,
26
(
2
), pp.
121
142
.
4.
Kalmár-Nagy
,
T.
,
2009
, “
Practical Stability Limits in Turning
,”
ASME
Paper No. DETC2009-87645.
5.
Lin
,
S. Y.
,
Fang
,
Y. C.
, and
Huang
,
C. W.
,
2008
, “
Improvement Strategy for Machine Tool Vibration Induced From the Movement of a Counterweight During Machining Process
,”
Int. J. Mach. Tools Manuf.
,
48
(7–8), pp.
870
877
.
6.
Khasawneh
,
F. A.
,
Mann
,
B. P.
,
Insperger
,
T.
, and
Stépán
,
G.
,
2009
, “
Increased Stability of Low-Speed Turning Through a Distributed Force and Continuous Delay Model
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(4), p. 041003.
7.
Moradi
,
H.
,
Bakhtiari-Nejad
,
F.
, and
Movahhedy
,
M. R.
,
2008
, “
Tuneable Vibration Absorber Design to Suppress Vibrations: An Application in Boring Manufacturing Process
,”
J. Sound Vib.
,
318
(1–2), pp.
93
108
.
8.
Wang
,
M.
,
2011
, “
Feasibility Study of Nonlinear Tuned Mass Damper for Machining Chatter Suppression
,”
J. Sound Vib.
,
330
(
9
), pp.
1917
1930
.
9.
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: I and II
,
Springer-Verlag
,
Berlin, Germany
.
10.
Arnold
,
V. I.
,
1988
,
Dynamical Systems III. Encyclopaedia of Mathematical Sciences
,
Springer-Verlag
,
Berlin
.
11.
Parseh
,
M.
,
Dardel
,
M.
, and
Ghasemi
,
M. H.
,
2015
, “
Performance Comparison of Nonlinear Energy Sink and Linear Tuned Mass Damper in Steady-State Dynamics of a Linear Beam
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1981
2002
.
12.
Gourc
,
E.
,
Elc
,
L. D.
,
Kerschen
,
G.
,
Michon
,
G.
,
Aridon
,
G.
, and
Hot
,
A.
,
2016
, “
Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control
,”
Nonlinear Dynamics
, Vol. 1 (Conference Proceedings of the Society for Experimental Mechanics Series),
Springer International Publishing
, Cham, Switzerland, pp. 83–95.
13.
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2015
, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(2), p. 021006.
14.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppression of Aeroelastic Instability by Means of Broadband Passive Targeted Energy Transfers, Part I: Theory
,”
AIAA J.
,
45
(
3
), pp.
693
711
.
15.
Lee
,
Y. S.
,
Kerschen
,
G.
,
McFarland
,
D. M.
,
Hill
,
W. J.
,
Nichkawde
,
C.
,
Strganac
,
T. W.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Suppression of Aeroelastic Instability by Means of Broadband Passive Targeted Energy Transfers, Part II: Experiments
,”
AIAA J.
,
45
(
10
), pp.
2391
2400
.
16.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2008
, “
Enhancing Robustness of Aeroelastic Instability Suppression Using Multi-Degree-of-Freedom Nonlinear Energy Sinks
,”
AIAA J.
,
46
(
6
), pp.
1371
1394
.
17.
Manevitch
,
L.
,
2001
, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables
,”
Nonlinear Dyn.
,
25
(1), pp.
95
109
.
18.
Namachchivaya
,
N. S.
, and
Van Roessel
,
H. J.
,
2003
, “
A Center-Manifold Analysis of Variable Speed Machining
,”
Dyn. Syst.
,
18
(
3
), pp.
245
270
.
19.
Nankali
,
A.
,
Surampalli
,
H.
, and
Lee
,
Y. S.
,
2011
, “
Suppression of Machine Tool Chatter Using Nonlinear Energy Sink
,”
ASME
Paper No. DETC2011-48502.
20.
Nankali
,
A.
,
Lee
,
Y. S.
, and
Kalmár-Nagy
,
T.
,
2013
, “
Targeted Energy Transfer for Suppressing Regenerative Instabilities in a 2-DOF Machine Tool Model
,”
ASME
Paper No. DETC2013-13510.
21.
Gourc
,
E.
,
Seguy
,
S.
,
Michon
,
G.
,
Berlioz
,
A.
, and
Mann
,
B. P.
,
2015
, “
Quenching Chatter Instability in Turning Process With a Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
355
, pp.
392
406
.
22.
Gourc
,
E.
,
Seguy
,
S.
,
Michon
,
G.
, and
Berlioz
,
A.
,
2012
, “
Delayed Dynamical System Strongly Coupled to a Nonlinear Energy Sink: Application to Machining Chatter
,”
MATEC Web Conf.
,
1
, p.
05002
.
23.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Roose
,
D.
,
2002
, “
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL
,”
ACM Trans. Math. Software
,
28
(
1
), pp.
1
21
.
24.
Gendelman
,
O. V.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
,
2010
, “
Asymptotic Analysis of Passive Nonlinear Suppression of Aeroelastic Instabilities of a Rigid Wing in Subsonic Flow
,”
SIAM J. Appl. Math.
,
70
(
5
), pp.
1655
1677
.
25.
Gendelman
,
O. V.
, and
Bar
,
T.
,
2010
, “
Bifurcations of Self-Excitation Regimes in a Van der Pol Oscillator With a Nonlinear Energy Sink
,”
Physica D
,
239
(3–4), pp.
220
229
.
You do not currently have access to this content.