In this paper, stochastic responses and behaviors of a nonlinear rotor system with the fault of uncertain parallel misalignment and under random fluid-induced forces are investigated. First, the equations of motion of the rotor system are derived by taking into account the nonlinear journal bearings, the unsymmetrical section of the shaft, and the displacement constraint between the two adjacent rotors. Then, the modeling on uncertainties of misalignment and random fluid-induced forces are developed based on the polynomial chaos expansion (PCE) technique, where the misalignment is modeled as a bounded random variable with parameter η distribution and the fluid-induced force as a random variable with standard white noise process. Finally, examples on the stochastic dynamic behaviors of the nonlinear generator-rotor system are studied, and the influences of the uncertainties on the effects of shaft misalignment, the stochastic behaviors near bifurcation point as well as the distribution of the system responses are well demonstrated.

References

References
1.
Leng
,
X. L.
,
Meng
,
G.
,
Zhang
,
T.
, and
Fang
,
T.
,
2007
, “
Bifurcation and Chaos Response of a Cracked Rotor With Random Disturbance
,”
J. Sound Vib.
,
299
(
3
), pp.
621
632
.
2.
Young
,
T. H.
,
Shiau
,
T. N.
, and
Kuo
,
Z. H.
,
2007
, “
Dynamic Stability of Rotor-Bearing Systems Subjected to Random Axial Forces
,”
J. Sound Vib.
,
305
(
3
), pp.
467
480
.
3.
Ma
,
Y. H.
,
Liang
,
Z. C.
,
Chen
,
M.
, and
Hong
,
J.
,
2013
, “
Interval Analysis of Rotor Dynamic Response With Uncertain Parameters
,”
J. Sound Vib.
,
332
(
16
), pp.
3869
3880
.
4.
Didier
,
J.
,
Sinou
,
J. J.
, and
Faverjon
,
B.
,
2012
, “
Study of the Non-Linear Dynamic Response of a Rotor System With Faults and Uncertainties
,”
J. Sound Vib.
,
331
(
3
), pp.
671
703
.
5.
Al-Hussain
,
K. M.
, and
Redmond
,
I.
,
2002
, “
Dynamic Response of Two Rotors Connected by Rigid Mechanical Coupling With Parallel Misalignment
,”
J. Sound Vib.
,
249
(
3
), pp.
483
498
.
6.
Pennacchi
,
P.
, and
Vania
,
A.
,
2005
, “
Diagnosis and Model Based Identification of a Coupling Misalignment
,”
Shock Vib.
,
12
(
4
), pp.
293
308
.
7.
Lees
,
A. W.
, and
Penny
,
J. E. T.
,
2008
, “
The Development of Harmonics in Rotor Misalignment
,”
9th International Conference on Vibrations in Rotating Machinery
, Exeter, UK, Sept. 8–10, Vol.
2
, pp.
825
834
.
8.
Li
,
Z. G.
,
Jiang
,
J.
, and
Tian
,
Z.
,
2016
, “
Non-Linear Vibration of an Angular-Misaligned Rotor System With Uncertain Parameters
,”
J. Vib. Control
,
22
, pp.
129
144
.
9.
Kima
,
H. S.
,
Chob
,
M.
, and
Song
,
S. J.
,
2003
, “
Stability Analysis of a Turbine Rotor System With Alford Force
,”
J. Sound Vib.
,
260
(
1
), pp.
167
182
.
10.
Hsu
,
Y.
, and
Brennen
,
C. E.
,
2002
, “
Effect of Swirl on Rotordynamic Forces Caused by Front Shroud Pump Leakage
,”
ASME J. Fluid Eng.
,
124
(
4
), pp.
1005
1010
.
11.
Chai
,
S.
,
Zhang
,
Y. M.
,
Ma
,
H.
,
Qu
,
Q. W.
, and
Zhao
,
Y. Q.
,
2001
, “
The Analysis on the Air-Exciting-Vibration Force of Control Stage of Steam Turbine
,”
Appl. Math. Mech.-Engl. Ed.
,
22
(
7
), pp.
794
801
.
12.
Simon
,
G.
,
1992
, “
Prediction of Vibration Behavior of Large Turbo Machinery on Elastic Foundation Due to Unbalance and Coupling Misalignment
,”
Proc. Inst. Mech. Eng., Part C
,
206
(
1
), pp.
29
39
.
13.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
14.
Ghanem
,
R.
, and
Spanos
,
P. D.
,
1990
, “
Polynomial Chaos in Stochastic Finite Elements
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
197
202
.
15.
Ghanem
,
R.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
Berlin
.
16.
Manan
,
A.
, and
Cooper
,
J. E.
,
2010
, “
Prediction of Uncertain Frequency Response Function Bounds Using Polynomial Chaos Expansion
,”
J. Sound Vib.
,
329
(
16
), pp.
3348
3358
.
17.
Walters
,
R. W.
,
2003
, “
Toward Stochastic Fluid Mechanics Via Polynomial Chaos
,”
AIAA
Paper No. AIAA-2003-0413.
18.
Desai
,
A.
, and
Sarkar
,
S.
,
2010
, “
Analysis of a Nonlinear Aeroelastic System With Parametric Uncertainties Using Polynomial Chaos Expansion
,”
Math. Prob. Eng.
,
2010
, p.
379472
.
19.
Hosder
,
S.
,
Walters
,
R. W.
, and
Perez
,
R. A.
,
2006
, “
Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulation
,”
AIAA
Paper No. 2006-891.
20.
Li
,
M.
, and
He
,
L.
,
2010
, “
The Dynamics of a Parallel-Misaligned and Unbalanced Rotor System Under the Action of Non-Linear Oil Film Forces
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
9
), pp.
1875
1889
.
21.
Shinozuka
,
M.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
J. Sound Vib.
,
25
(
1
), pp.
111
128
.
22.
Alastair
,
C.
,
1981
,
Basic Lubrication Theory
,
3rd ed.
,
Ellis Horwood Limited
,
Chichester, UK
.
23.
Fuller
,
D. D.
,
1984
,
Theory and Practice of Lubrication for Engineers
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.