The effect of impulsive stiffness variation to the modal energy content of dynamical systems is investigated in this contribution. Therefore, the overall number of modes of vibration is divided into a set of lower and a set of higher modes. It is shown analytically that impulsive stiffness variation, applied in a state-dependent, nonlinear manner allows a targeted transfer of discrete amounts of energy across mode sets. Analytical conditions are presented, holding for a transfer from the lower to the higher mode set or vice versa. The existence of transfer cases where no energy crosses the system boundary, i.e., the energy-neutral case, is investigated in a comprehensive manner. Some numerical investigations underline that shifting vibration energy to higher modes causes a faster decay of vibration amplitudes, as the damping properties of a mechanical system can be utilized more effectively. Moreover, it is demonstrated that the proposed approach allows to eliminate vibration frequencies from the frequency spectrum of mechanical systems.

References

References
1.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
2.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I-Dynamics of the Underlying Hamiltonian System
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
3.
Tsakirtzis
,
S.
,
Panagopoulos
,
P. N.
,
Kerschen
,
G.
,
Gendelman
,
O.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2007
, “
Complex Dynamics and Targeted Energy Transfer in Linear Oscillators Coupled to Multi-Degree-of-Freedom Essentially Nonlinear Attachments
,”
Nonlinear Dyn.
,
48
(
3
), pp.
285
318
.
4.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
,
Dordrecht, Netherlands
.
5.
Lamarque
,
C. H.
,
Gendelman
,
O. V.
,
Savadkoohi
,
A. T.
, and
Etcheverria
,
E.
,
2011
, “
Targeted Energy Transfer in Mechanical Systems by Means of Non-Smooth Nonlinear Energy Sink
,”
Acta Mech.
,
221
(1), pp.
175
200
.
6.
Romeo
,
F.
,
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(1), p.
011007
.
7.
Bobrow
,
J. E.
,
Jabbari
,
F.
, and
Thai
,
K.
,
1995
, “
An Active Truss Element and Control Law for Vibration Suppression
,”
Smart Mater. Struct.
,
4
(
4
), pp.
264
269
.
8.
Clark
,
W. W.
,
2000
, “
Vibration Control With State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
.
9.
Jabbari
,
F.
, and
Bobrow
,
J. E.
,
2002
, “
Vibration Suppression With Resettable Device
,”
J. Eng. Mech.
,
128
(
9
), pp.
916
924
.
10.
Ramaratnam
,
A.
,
Jalili
,
N.
, and
Dawson
,
D. M.
,
2004
, ”
Semi-Active Vibration Control Using Piezoelectric-Based Switched Stiffness
,”
2004 American Control Conference
, June 30–July 2, Boston, MA.
11.
Ramaratnam
,
A.
, and
Jalili
,
N.
,
2006
, “
A Switched Stiffness Approach for Structural Vibration Control: Theory and Real-Time Implementation
,”
J. Sound Vib.
,
291
(1–2), pp.
258
274
.
12.
Leavitt
,
J.
,
Jabbari
,
F.
, and
Bobrow
,
J. E.
,
2007
, “
Optimal Performance of Variable Stiffness Devices for Structural Control
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
2
), pp.
171
177
.
13.
Dohnal
,
F.
,
2008
, “
Damping by Parametric Stiffness Excitation: Resonance and Anti-Resonance
,”
J. Vib. Control
,
14
(
5
), pp.
669
688
.
14.
Ecker
,
H.
, and
Pumhössel
,
T.
,
2012
, “
Vibration Suppression and Energy Transfer by Parametric Excitation in Drive Systems
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
8
), pp.
2000
2014
.
15.
Tondl
,
A.
,
1998
, “
To the Problem of Quenching Self-Excited Vibrations
,”
Acta Tech. ČSAV
,
43
, pp.
109
116
.
16.
Al-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. Non-Linear Mech.
,
52
, pp.
96
109
.
17.
Luo
,
J.
,
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Fahnestock
,
L. A.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Spencer
,
B. F.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Large-Scale Experimental Evaluation and Numerical Simulation of a System of Nonlinear Energy Sinks for Seismic Mitigation
,”
Eng. Struct.
,
77
, pp.
34
48
.
18.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
19.
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2015
, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021006
.
20.
Sapsis
,
T. P.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
.
21.
Quinn
,
D. D.
,
Hubbard
,
S.
,
Wierschem
,
N.
,
Al-Shudeifat
,
M. A.
,
Ott
,
R. J.
,
Luo
,
J.
,
Spencer
,
B. F.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments
,”
Proc. Inst. Mech. Eng., Part K
,
226
(
2
), pp.
122
146
.
22.
Pumhössel
,
T.
,
Hehenberger
,
P.
, and
Zeman
,
K.
,
2013
, “
On the Effect of Impulsive Parametric Excitation to the Modal Energy Content of Hamiltonian Systems
,”
11th International Conference on Vibration Problems (ICOVP)
, Lisbon, Portugal, Sept. 9–12.
23.
Pumhössel
,
T.
, and
Hehenberger
,
P.
,
2014
, “
Impulsive Parametric Excitation as a Means to Transfer Energy Between Modes of Vibration
,”
8th European Nonlinear Dynamics Conference (ENOC)
, Vienna, Austria, July 6–11.
24.
Hsu
,
C. S.
,
1972
, “
Impulsive Parametric Excitation: Theory
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
551
558
.
25.
Hsu
,
C. S.
, and
Cheng
,
W.-H.
,
1973
, “
Applications of the Theory of Impulsive Parametric Excitation and New Treatments of General Parametric Excitation Problems
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
78
86
.
You do not currently have access to this content.