This work presents an experimental and numerical study on the dynamic properties of viscoelastic (VE) microvibration damper under microvibration conditions at different frequencies and temperatures. The experimental results show that the storage modulus and the loss factor of VE microvibration damper both increase with increasing frequency but decrease with increasing temperature. To explicitly and accurately represent the temperature and frequency effects on the dynamic properties of VE microvibration damper, a modified standard solid model based on a phenomenological model and chain network model is proposed. A Gaussian chain spring and a temperature-dependent dashpot are employed to reflect the temperature effect in the model, and the frequency effect is considered with the nature of the standard solid model. Then, the proposed model is verified by comparing the numerical results with the experimental data. The results show that the proposed model can accurately describe the dynamic properties of VE microvibration damper at different temperatures and frequencies.

References

References
1.
Wacker
,
T.
,
Weimer
,
L.
, and
Eckert
,
K.
,
2005
, “
GOCE Platform Micro-Vibration Verification By Test and Analysis
,”
European Conference on Spacecraft Structures, Materials and Mechanical Testing
, Noordwijk, Netherlands, pp.
10
12
.
2.
Zhang
,
Z.
,
Aglietti
,
G. S.
, and
Zhou
,
W.
,
2011
, “
Microvibrations Induced by a Cantilevered Wheel Assembly With a Soft-Suspension System
,”
AIAA. J.
,
49
(
5
), pp.
1067
1079
.
3.
Rao
,
M. D.
,
2003
, “
Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airplanes
,”
J. Sound Vib.
,
262
(
3
), pp.
457
474
.
4.
Kim
,
J.
,
Ryu
,
J.
, and
Chung
,
L.
,
2006
, “
Seismic Performance of Structures Connected by Viscoelastic Dampers
,”
Eng. Struct.
,
28
(
2
), pp.
183
195
.
5.
Rashid
,
A.
, and
Nicolescu
,
C. M.
,
2008
, “
Design and Implementation of Tuned Viscoelastic Dampers for Vibration Control in Milling
,”
Int. J. Mach. Tool. Manuf.
,
48
(
9
), pp.
1036
1053
.
6.
Moliner
,
E.
,
Museros
,
P.
, and
Martínez-Rodrigo
,
M. D.
,
2012
, “
Retrofit of Existing Railway Bridges of Short to Medium Spans for High-Speed Traffic Using Viscoelastic Dampers
,”
Eng. Struct.
,
40
, pp.
519
528
.
7.
Xu
,
Z. D.
,
Guo
,
Y. F.
,
Wang
,
S. A.
, and
Huang
,
X. H.
,
2013
, “
Optimization Analysis on Parameters of Multi-Dimensional Earthquake Isolation and Mitigation Device Based on Genetic Algorithm
,”
Nonlinear Dyn.
,
72
(
4
), pp.
757
765
.
8.
Bergman
,
D. M.
, and
Hanson
,
R. D.
,
1993
, “
Viscoelastic Mechanical Damping Devices Tested at Real Earthquake Displacements
,”
Earthquake Spectra
,
9
(
3
), pp.
389
417
.
9.
Min
,
K. W.
,
Kim
,
J.
, and
Lee
,
S. H.
,
2004
, “
Vibration Tests of 5-Storey Steel Frame With Viscoelastic Dampers
,”
Eng. Struct.
,
26
(
6
), pp.
831
839
.
10.
Guo
,
Y.
,
Meng
,
G.
, and
Li
,
H.
,
2009
, “
Parameter Determination and Response Analysis of Viscoelastic Material
,”
Arch. Appl. Mech.
,
79
(
2
), pp.
147
155
.
11.
Zhao
,
G.
,
Pan
,
P.
,
Qian
,
J. R.
, and
Lin
,
J. S.
,
2012
, “
Experimental Study of Viscoelastic Dampers Under Large Deformation
,”
Appl. Mech. Mater.
,
166–169
, pp.
2226
2233
.
12.
Bhatti
,
A. Q.
,
2013
, “
Performance of Viscoelastic Dampers (VED) Under Various Temperatures and Application of Magnetorheological Dampers (MRD) for Seismic Control of Structures
,”
Mech. Time Depend. Mater.
,
17
(
3
), pp.
275
284
.
13.
Inaudi
,
J. A.
,
Blondet
,
M.
,
Kelly
,
J. M.
, and
Aprile
,
A.
,
1996
, “
Heat Generation Effects on Viscoelastic Dampers in Structures
,”
11th World Conference on Earthquake Engineering, Pergamon Elsevier Science
, Oxford, UK, Paper No. 424.
14.
Chang
,
K. C.
,
Tsai
,
M. H.
,
Chang
,
Y. H.
, and
Lai
,
M. L.
,
1998
, “
Temperature Rise Effect of Viscoelastically Damped Structures Under Strong Earthquake Ground Motions
,”
J. Mech.
,
14
(
3
), pp.
125
135
.
15.
De Cazenove
,
J.
,
Rade
,
D. A.
,
De Lima
,
A. M. G.
, and
Araújo
,
C. A.
,
2012
, “
A Numerical and Experimental Investigation on Self-Heating Effects in Viscoelastic Dampers
,”
Mech. Syst. Signal Process.
,
27
, pp.
433
445
.
16.
Chang
,
K.
,
Soong
,
T. T.
,
Oh
,
S. T.
, and
Lai
,
M. L.
,
1992
, “
Effect of Ambient Temperature on Viscoelastically Damped Structure
,”
ASCE J. Struct. Eng.
,
118
(
7
), pp.
1955
1973
.
17.
Tsai
,
C. S.
,
1994
, “
Temperature Effect of Viscoelastic Dampers During Earthquakes
,”
ASCE J. Struct. Eng.
,
120
(
2
), pp.
394
409
.
18.
Lesieutre
,
G. A.
, and
Govindswamy
,
K.
,
1996
, “
Finite Element Modeling of Frequency Dependent and Temperature-Dependent Dynamic Behavior of Viscoelastic Materials in Simple Shear
,”
Int. J. Solids Struct.
,
33
(
3
), pp.
419
432
.
19.
Drozdov
,
A. D.
, and
Dorfmann
,
A.
,
2002
, “
The Effect of Temperature on the Viscoelastic Response of Rubbery Polymers at Finite Strains
,”
Acta Mech.
,
154
(
1–4
), pp.
189
214
.
20.
Ramrakhyani
,
D. S.
,
Lesieutre
,
G. A.
, and
Smith
,
E. C.
,
2004
, “
Modeling of Elastomeric Materials Using Nonlinear Fractional Derivative and Continuously Yielding Friction Elements
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3929
3948
.
21.
Xu
,
Z. D.
,
Wang
,
D. X.
, and
Shi
,
C. F.
,
2011
, “
Model, Tests and Application Design for Viscoelastic Dampers
,”
J. Vib. Control
,
17
(
9
), pp.
1359
1370
.
22.
Xu
,
Z. D.
,
Xu
,
C.
, and
Hu
,
J.
,
2015
, “
Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper
,”
J. Vib. Control
,
21
(
13
), pp.
2536
2552
.
23.
Xu
,
Z. D.
,
Wang
,
S. A.
, and
Xu
,
C.
,
2014
, “
Experimental and Numerical Study on Long-Span Reticulate Structure With Multidimensional High-Damping Earthquake Isolation Devices
,”
J. Sound Vib.
,
333
(
14
), pp.
3044
3057
.
24.
Soong
,
T. T.
, and
Dargush
,
G. F.
,
1997
,
Passive Energy Dissipation Systems in Structural Engineering
,
Wiley
,
New York
.
25.
Richard
,
M. C.
,
2003
,
Theory of Viscoelasticity
,
2nd ed.
,
Dover Publications
,
New York
.
26.
Lubarda
,
V. A.
,
Benson
,
D. J.
, and
Meyers
,
M. A.
,
2003
, “
Strain-Rate Effects in Rheological Models of Inelastic Response
,”
Int. J. Plasticity
,
19
(
8
), pp.
1097
1118
.
27.
Zhou
,
G. Q.
, and
Liu
,
X. M.
,
1996
,
Theory of Viscoelasticity
,
University of Science and Technology of China Press
,
Hefei, China
.
28.
He
,
M., J.
,
2007
,
Polymer Physics
,
Fudan University Press
,
Shanghai, China
.
29.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.
30.
Treloar
,
L. R. G.
,
1943
, “
The Elasticity of a Network of Long-Chain Molecules—I
,”
Rubber Chem. Technol.
,
16
(
4
), pp.
746
751
.
31.
Arruda
,
E. M.
,
Boyce
,
M. C.
, and
Jayachandran
,
R.
,
1995
, “
Effects of Strain Rate, Temperature and Thermomechanical Coupling on the Finite Strain Deformation of Glassy Polymers
,”
Mech. Mater.
,
19
(
2
), pp.
193
212
.
You do not currently have access to this content.