In this paper, we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy-type problem, with dependence on the Caputo–Katugampola derivative, is proved. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation (FDE).
Issue Section:
Research Papers
Keywords:
Fractional calculus
References
1.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies
, Elsevier Science B.V.
, Amsterdam, The Netherlands
.2.
Podlubny
, I.
, 1999
, Fractional Differential Equations Mathematics in Science and Engineering
, Vol. 198
, Academic Press
, San Diego, CA
.3.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993
, Fractional Integrals and Derivatives
[translated from the 1987 Russian original], Gordon and Breach
, Yverdon, Switzerland
.4.
Katugampola
, U. N.
, 2011
, “New Approach to a Generalized Fractional Integral
,” Appl. Math. Comput.
, 218
(3
), pp. 860
–865
.5.
Katugampola
, U. N.
, 2014
, “A New Approach to Generalized Fractional Derivatives
,” Bull. Math. Anal. Appl.
, 6
(4
), pp. 1
–15
.6.
Katugampola
, U. N.
, 2016
, “Existence and Uniqueness Results for a Class of Generalized Fractional Differential Equations
,” arXiv:1411.52297.
Gambo
, Y. Y.
, Jarad
, F.
, Baleanu
, D.
, and Abdeljawad
, T.
, 2014
, “On Caputo Modification of the Hadamard Fractional Derivatives
,” Adv. Differ. Equations
, 2014
(10
), pp. 1
–12
.8.
Jarad
, F.
, Abdeljawad
, T.
, and Baleanu
, D.
, 2012
, “Caputo-Type Modification of the Hadamard Fractional Derivatives
,” Adv. Differ. Equations
, 2012
(142
), pp. 1
–8
.9.
Kilbas
, A. A.
, and Marzan
, S. A.
, 2004
, “Cauchy Problem for Differential Equation With Caputo Derivative
,” Fractional Calculus Appl. Anal.
, 7
(3
), pp. 297
–321
.10.
Atanacković
, T. M.
, and Stankovic
, B.
, 2008
, “On a Numerical Scheme for Solving Differential Equations of Fractional Order
,” Mech. Res. Commun.
, 35
(7
), pp. 429
–438
.11.
Pooseh
, S.
, Almeida
, R.
, and Torres
, D. F. M.
, 2013
, “Numerical Approximations of Fractional Derivatives With Applications
,” Asian J. Control
, 15
(3
), pp. 698
–712
.12.
Pooseh
, S.
, Almeida
, R.
, and Torres
, D. F. M.
, 2012
, “Expansion Formulas in Terms of Integer-Order Derivatives for the Hadamard Fractional Integral and Derivative
,” Numer. Funct. Anal. Optim.
, 33
(3
), pp. 301
–319
.13.
Ford
, N. J.
, and Morgado
, M. L.
, 2011
, “Fractional Boundary Value Problems: Analysis and Numerical Methods
,” Fractional Calculus Appl. Anal.
, 14
(4
), pp. 554
–567
.14.
Ford
, N. J.
, and Morgado
, L. M.
, 2012
, “Distributed Order Equations as Boundary Value Problems
,” Comput. Math. Appl.
, 64
(10
), pp. 2973
–2981
.15.
Gracia
, J. L.
, and Stynes
, M.
, 2015
, “Central Difference Approximation of Convection in Caputo Fractional Derivative Two-Point Boundary Value Problems
,” J. Comput. Appl. Math.
, 273
(C
), pp. 103
–115
.16.
Sousa
, E.
, 2014
, “An Explicit High Order Method for Fractional Advection Diffusion Equations
,” J. Comput. Phys.
, 278
, pp. 257
–274
.17.
Yan
, Y.
, Pal
, K.
, and Ford
, N. J.
, 2014
, “Higher Order Numerical Methods for Solving Fractional Differential Equations
,” BIT Numer. Math.
, 54
(2
), pp. 555
–584
.18.
Yang
, Q.
, Liu
, F.
, and Turner
, I.
, 2010
, “Numerical Methods for Fractional Partial Differential Equations With Riesz Space Fractional Derivatives
,” Appl. Math. Modell.
, 34
(1
), pp. 200
–218
.19.
Atanacković
, T. M.
, Janevb
, M.
, Pilipovicc
, S.
, and Zoricab
, D.
, 2014
, “Convergence Analysis of a Numerical Scheme for Two Classes of Non-Linear Fractional Differential Equations
,” Appl. Math. Comput.
, 243
, pp. 611
–623
.20.
Garrappa
, R.
, 2007
, “Some Formulas for Sums of Binomial Coefficients and Gamma Functions
,” Int. Math. Forum
, 2
(13–16), pp. 725
–733
.21.
Tricomi
, F. G.
, and Erdélyi
, A.
, 1951
, “The Asymptotic Expansion of a Ratio of Gamma Functions
,” Pac. J. Math.
, 1
(1
), pp. 133
–142
.Copyright © 2016 by ASME
You do not currently have access to this content.