The objective of this paper is to identify the suitable advance controller among optimized proportional–integral–derivative (O-PID), improved self-tuning fuzzy-PID (ISTF-PID), advanced fuzzy nonadaptive PID (AF-NA-PID), and AF-adaptive PID (AF-A-PID) controllers for speed control of nonlinear hybrid electric vehicle (HEV) system. The conventional PID (C-PID) controller cannot tackle the nonlinear systems effectively and gives a poor tracking and disturbance rejection performance. The performances of HEV with the proposed advance controllers are compared with existing C-PID, STF-PID, and conventional fuzzy PID (C-F-PID) controllers. The proposed controllers are designed to achieve the desired vehicle speed and rejection of disturbance due to road grade with reduced pollution and fuel economy.

References

References
1.
Neath
,
M. J.
,
Swain
,
A. K.
,
Madawala
,
U. K.
, and
Thrimawithana
,
D. J.
,
2014
, “
An Optimal PID Controller for a Bidirectional Inductive Power Transfer System Using Multiobjective Genetic Algorithm
,”
IEEE Trans. Power Electron.
,
29
(
3
), pp.
1523
1531
.
2.
Yadav
,
A. K.
, and
Gaur
,
P.
,
2014
, “
Robust Adaptive Speed Control of Uncertain Hybrid Electric Vehicle Using Electronic Throttle Control With Varying Road Grade
,”
Nonlinear Dyn.
,
76
(
1
), pp.
305
321
.
3.
Meza
,
J. L.
,
Santibanez
,
V.
,
Soto
,
R.
, and
Llama
,
M. A.
,
2012
, “
Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
59
(
6
), pp.
2709
2718
.
4.
Yadav
,
A. K.
, and
Gaur
,
P.
,
2014
, “
AI-Based Adaptive Control and Design of Autopilot System for Nonlinear UAV
,”
Sadhana
,
39
(
4
), pp.
765
783
.
5.
Lin
,
C.-M.
,
Lin
,
M.-H.
, and
Chen
,
C.-W.
,
2011
, “
SoPC-Based Adaptive PID Control System Design for Magnetic Levitation System
,”
IEEE Syst. J.
,
5
(
2
), pp.
278
287
.
6.
Ahn
,
K. K.
, and
Truong
,
D. Q.
,
2009
, “
Online Tuning Fuzzy PID Controller Using Robust Extended Kalman Filter
,”
J. Process Control
,
19
(
6
), pp.
1011
1023
.
7.
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2011
, “
Force Control for Press Machines Using an Online Smart Tuning Fuzzy PID Based on a Robust Extended Kalman Filter
,”
Expert Syst. Appl.
,
38
(
5
), pp.
5879
5894
.
8.
Nasir Uddin
,
M.
,
Abido
,
M. A.
, and
Rahman
,
M. A.
,
2005
, “
Real-Time Performance Evaluation of a Genetic-Algorithm-Based Fuzzy Logic Controller for IPM Motor Drives
,”
IEEE Trans. Ind. Appl.
,
41
(
1
), pp.
246
252
.
9.
Cheng
,
M.
,
Sun
,
Q.
, and
Zhou
,
E.
,
2006
, “
New Self-Tuning Fuzzy PI Control of a Novel Doubly Salient Permanent-Magnet Motor Drive
,”
IEEE Trans. Ind. Electron.
,
53
(
3
), pp.
814
821
.
10.
Shen
,
A. W.
,
Pham
,
C.-T.
,
Dzung
,
P. Q.
,
Anh
,
N. B.
, and
Viet
,
L. H.
,
2012
, “
Using Fuzzy Logic Self-Tuning PI Gain Controller Z-Source Inverter in Hybrid Electric Vehicles
,”
IACSIT Int. J. Eng. Technol.
,
4
(
4
), pp.
382
387
.
11.
Mudi
,
R. K.
, and
Pal
,
N. R.
,
1999
, “
A Robust Self-Tuning Scheme for PI and PD Type Fuzzy Controllers
,”
IEEE Trans. Fuzzy Syst.
,
7
(
1
), pp.
2
16
.
12.
Pham
,
C.-T.
,
Shen
,
A. W.
,
Dzung
,
P. Q.
,
Anh
,
N. B.
, and
Viet
,
L. H.
,
2012
, “
Self-Tuning Fuzzy PI-Type Controller in Z-Source Inverter for Hybrid Electric Vehicles
,”
Int. J. Power Electron. Drive Syst.
,
2
(
4
), pp.
353
363
.
13.
Woo
,
Z.-W.
,
Chung
,
H.-Y.
, and
Lin
,
J.-J.
,
2000
, “
A PID Type Fuzzy Controller With Self-Tuning Scaling Factors
,”
Fuzzy Sets Syst.
,
115
(
2
), pp.
321
326
.
14.
Xu
,
J.-X.
,
Hang
,
C.-C.
, and
Liu
,
C.
,
2000
, “
Parallel Structure and Tuning of a Fuzzy PID Controller
,”
Automatica
,
36
(
5
), pp.
673
684
.
15.
Liu
,
F.-C.
,
Liang
,
L.-H.
, and
Gao
,
J.-J.
, “
Fuzzy PID Control of Space Manipulator for Both Ground Alignment and Space Applications
,”
Int. J. Autom. Comput.
,
11
(
4
), pp.
353
360
.
16.
Happyanto
,
D. C.
,
Soebagio
, and
Purnomo
,
M. H.
,
2012
, “
New Algorithm for the Smoothing Speed Control of Induction Motor in Electric Car Based on Self-Tuning Parameter PID-Fuzzy Logic
,”
IPTEK J. Technol. Sci.
,
23
(
2
), pp.
41
47
.
17.
Yadav
,
A. K.
,
Gaur
,
P.
,
Mittal
,
A. P.
, and
Anzar
,
M.
,
2011
, “
Comparative Analysis of Various Control Techniques for Inverted Pendulum
,”
India International Conference on Power Electronics 2010
(IICPE-2010), New Delhi, India, Jan. 28–30.
18.
Fereidouni
,
A.
,
Masoum
,
M. A. S.
, and
Moghbel
,
M.
,
2015
, “
A New Adaptive Configuration of PID Type Fuzzy Logic Controller
,”
ISA Trans.
,
56
(
3
), pp.
222
240
.
19.
Li
,
W.
,
1998
, “
Design of a Hybrid Fuzzy Logic Proportional Plus Conventional Integral-Derivative Controller
,”
IEEE Trans. Fuzzy Syst.
,
6
(
4
), pp.
449
463
.
20.
Raviraj
,
V. S. C.
, and
Sen
,
P. C.
,
1997
, “
Comparative Study of Proportional–Integral, Sliding Mode and Fuzzy Logic Controllers for Power Converters
,”
IEEE Trans. Ind. Appl.
,
33
(
2
), pp.
518
524
.
21.
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2009
, “
Force Control for Hydraulic Load Simulator Using Self-Tuning Grey Predictor Fuzzy PID
,”
Mechatronics
,
19
(
2
), pp.
233
246
.
22.
Yadav
,
A. K.
,
Gaur
,
P.
,
Jha
,
S. K.
,
Gupta
,
J. R. P.
, and
Mittal
,
A. P.
,
2011
, “
Optimal Speed Control of Hybrid Electric Vehicles
,”
J. Power Electron.
,
11
(
4
), pp.
393
400
.
23.
Karasakal
,
O.
,
Guzelkaya
,
M.
,
Eksin
,
I.
, and
Yesil
,
E.
,
2011
, “
An Error-Based On-Line Rule Weight Adjustment Method for Fuzzy PID Controllers
,”
Expert Syst. Appl.
,
38
(
8
), pp.
10124
10132
.
24.
Wirasingha
,
S. G.
, and
Emadi
,
A.
,
2011
, “
Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
1
), pp.
111
122
.
25.
Naranjo
,
J. E.
,
Gonzalez
,
C.
,
García
,
R.
, and
de Pedro
,
T.
,
2007
, “
Cooperative Throttle and Brake Fuzzy Control for ACC + Stop & Go Maneuvers
,”
IEEE Trans. Veh. Technol.
,
56
(
4
), pp.
1623
1630
.
26.
Liu
,
W.
,
2013
,
Introduction to Hybrid Vehicles System Modeling and Control
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
27.
Guardiola
,
C.
,
Pla
,
B.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2014
, “
Insight Into the HEV/PHEV Optimal Control Solution Based on a New Tuning Method
,”
Control Eng. Pract.
,
29
(
1
), pp.
247
256
.
28.
Vasak
,
M.
,
Baotic
,
M.
,
Petrovic
,
I.
, and
Peric
,
N.
,
2007
, “
Hybrid Theory-Based Time-Optimal Control of an Electronic Throttle
,”
IEEE Trans. Ind. Electron.
,
54
(
3
), pp.
1483
1494
.
29.
Jiao
,
X.
,
Zhang
,
J.
, and
Shen
,
T.
,
2014
, “
An Adaptive Servo Control Strategy for Automotive Electronic Throttle and Experimental Validation
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6275
6284
.
You do not currently have access to this content.