In this paper, we establish a mathematical framework that allows us to optimize the speed profile and select the optimal gears for heavy-duty vehicles (HDVs) traveling on highways while varying parameters. The key idea is to solve the analogous boundary value problem (BVP) analytically for a simple scenario (linear damped system with quadratic elevation profile) and use this result to initialize a numerical continuation algorithm. Then, the numerical algorithm is used to investigate how the optimal solution changes with parameters. In particular, we gradually introduce nonlinearities (air resistance and engine saturation), implement different elevation profiles, and incorporate external perturbations (headwind and traffic). This approach enables real-time optimization in dynamic traffic conditions, therefore may be implemented on-board.

References

References
1.
Davis
,
S. C.
,
Diegel
,
S. W.
, and
Boundy
,
R. G.
,
2013
,
Transportation Energy Data Book
,
32 ed.
,
U.S. Department of Energy
, Washington, DC.
2.
U.S. Department of Transportation
,
2014
, “
2012 Commodity Flow Survey United States
,” Technical Report No. EC12TCF-US.
3.
Saltsman
,
B.
,
2014
, “
Impacts of Connectivity and Automation on Vehicle Operations
,”
Global Symposium on Connected Vehicle and Infrastructure
,
University of Michigan Transportation Research Institute
.
4.
Caveney
,
D.
,
2010
, “
Cooperative Vehicular Safety Applications
,”
IEEE Control Syst. Mag.
,
30
(
4
), pp.
38
53
.
5.
Hooker
,
J. N.
,
1988
, “
Optimal Driving for Single-Vehicle Fuel Economy
,”
Transp. Res. Part A
,
22
(
3
), pp.
183
201
.
6.
Monastyrsky
,
V. V.
, and
Golownykh
,
I. M.
,
1993
, “
Rapid Computation of Optimal Control for Vehicles
,”
Transp. Res. Part B
,
27
(
3
), pp.
219
227
.
7.
Lattemann
,
F.
,
Neiss
,
K.
,
Terwen
,
S.
, and
Connolly
,
T.
,
2004
, “
The Predictive Cruise Control: A System to Reduce Fuel Consumption of Heavy Duty Trucks
,” SAE Paper No. 2004-01-2616.
8.
Hellström
,
E.
,
2010
, “
Look-Ahead Control of Heavy Vehicles
,” Ph.D. thesis, Linköping University, Linköping, Sweden.
9.
Mensing
,
F.
,
Bideaux
,
E.
,
Trigui
,
R.
, and
Tattegrain
,
H.
,
2013
, “
Trajectory Optimization for Eco-Driving Taking Into Account Traffic Constraints
,”
Transp. Res. Part D
,
18
, pp.
55
61
.
10.
Jiménez
,
F.
,
López-Covarrubias
,
J. L.
,
Cabrera
,
W.
, and
Aparicio
,
F.
,
2013
, “
Real-Time Speed Profile Calculation for Fuel Saving Considering Unforeseen Situations and Travel Time
,”
IET Intell. Transp. Syst.
,
7
(
1
), pp.
10
19
.
11.
Jiménez
,
F.
, and
Cabrera-Montiel
,
W.
,
2014
, “
System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information
,”
Energies
,
7
(
6
), pp.
3576
3598
.
12.
Kohut
,
N.
,
Hedrick
,
K.
, and
Borrelli
,
F.
,
2009
, “
Integrating Traffic Data and Model Predictive Control to Improve Fuel Economy
,”
12th IFAC Symposium on Control in Transportation Systems
, pp.
155
160
.
13.
Xu
,
S.
,
Li
,
S. E.
,
Deng
,
K.
,
Li
,
S.
, and
Cheng
,
B.
,
2014
, “
A Unified Pseudospectral Computational Framework for Optimal Control of Road Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1
12
.
14.
Schwarzkopf
,
A. B.
, and
Leipnik
,
R. B.
,
1977
, “
Control of Highway Vehicles for Minimum Fuel Consumption Over Varying Terrain
,”
Transp. Res.
,
11
(
4
), pp.
279
286
.
15.
Chang
,
D. J.
, and
Morlok
,
E. K.
,
2005
, “
Vehicle Speed Profiles to Minimize Work and Fuel Consumption
,”
J. Transp. Eng.
,
131
(
3
), pp.
173
182
.
16.
Fröberg
,
A.
,
Hellström
,
E.
, and
Nielsen
,
L.
,
2006
, “
Explicit Fuel Optimal Speed Profiles for Heavy Trucks on a Set of Topographic Road Profiles
,” SAE Technical Paper No. 2006-01-1071.
17.
Saerens
,
B.
,
Rakha
,
H.
,
Diehl
,
M.
, and
Van den Bulck
,
E.
,
2013
, “
A Methodology for Assessing Eco-Cruise Control for Passenger Vehicles
,”
Transp. Res. Part D
,
19
, pp.
20
27
.
18.
Kamal
,
M. A. S.
,
Mukai
,
M.
,
Murata
,
J.
, and
Kawabe
,
T.
,
2011
, “
Ecological Vehicle Control on Roads With Up-Down Slopes
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
3
), pp.
783
794
.
19.
Kamal
,
M. S.
,
Mukai
,
M.
,
Murata
,
J.
, and
Kawabe
,
T.
,
2013
, “
Model Predictive Control of Vehicles on Urban Roads for Improved Fuel Economy
,”
IEEE Trans. Control Syst. Technol.
,
21
(
3
), pp.
831
841
.
20.
Wang
,
M.
,
Daamen
,
W.
,
Hoogendoorn
,
S. P.
, and
van Arem
,
B.
,
2014
, “
Rolling Horizon Control Framework for Driver Assistance Systems—Part I: Mathematical Formulation and Non-Cooperative Systems
,”
Transp. Res. Part C
,
40
, pp.
271
289
.
21.
Wang
,
M.
,
Daamen
,
W.
,
Hoogendoorn
,
S. P.
, and
van Arem
,
B.
,
2014
, “
Rolling Horizon Control Framework for Driver Assistance Systems—Part II: Cooperative Sensing and Cooperative Control
,”
Transp. Res. Part C
,
40
, pp.
290
311
.
22.
Hartl
,
R. F.
,
Sethi
,
S. P.
, and
Vickson
,
R. G.
,
1995
, “
A Survey of the Maximum Principles for Optimal Control Problems With State Constraints
,”
SIAM Rev.
,
37
(
2
), pp.
181
218
.
23.
Vinter
,
R.
,
2000
,
Optimal Control
(Systems & Control: Foundations & Applications),
Springer Science & Business Media
, Heidelberg, Germany.
24.
Clarke
,
F.
, and
De Pinho
,
M.
,
2010
, “
Optimal Control Problems With Mixed Constraints
,”
SIAM J. Control Optim.
,
48
(
7
), pp.
4500
4524
.
25.
Osmolovskii
,
N.
, and
Maurer
,
H.
,
2012
,
Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control
, Vol.
DC 24
,
SIAM Publications
,
Philadelphia, PA
.
26.
Maurer
,
H.
,
Büskens
,
C.
,
Kim
,
J.-H.
, and
Kaya
,
Y.
,
2005
, “
Optimization Methods for the Verification of Second Order Sufficient Conditions for Bang-Bang Controls
,”
Optim. Control Appl. Methods
,
26
(
3
), pp.
129
156
.
27.
Maurer
,
H.
, and
Pickenhain
,
S.
,
1995
, “
Second-Order Sufficient Conditions for Control Problems With Mixed Control-State Constraints
,”
J. Optim. Theory Appl.
,
86
(
3
), pp.
649
667
.
28.
Graichen
,
K.
, and
Petit
,
N.
,
2008
, “
Constructive Methods for Initialization and Handling Mixed State-Input Constraints in Optimal Control
,”
J. Guid. Control Dyn.
31
(
5
), pp.
1334
1343
.
29.
Wyczalkowski
,
M.
, and
Szeri
,
A. J.
,
2003
, “
Optimization of Acoustic Scattering From Dual-Frequency Driven Microbubbles at the Difference Frequency
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
3073
3079
.
30.
Alam
,
A.
,
2014
, “
Fuel-Efficient Heavy Duty Vehicle Platooning
,” Ph.D. thesis, Kungliga Tekniska Högskolan, Stockholm, Sweden.
31.
Orosz
,
G.
, and
Shah
,
S. P.
,
2012
, “
A Nonlinear Modeling Framework for Autonomous Cruise Control
,”
ASME
Paper No. DSCC2012-MOVIC2012-8871.
32.
Navistar
,
2011
, “
Maxxforce 11 and 13 Liter Engines
,” Navistar, Lisle, IL.
33.
Heywood
,
J. B.
,
2002
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
34.
Ozatay
,
E.
,
Özgüner
,
Ü.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2012
, “
Analytical Solution to the Minimum Fuel Consumption Optimization Problem With the Existence of a Traffic Light
,”
5th Annual Dynamic Systems and Control Conference and 11th Motion and Vibration Conference
, pp.
837
846
.
35.
Guzzella
,
L.
, and
Onder
,
C. H.
,
2004
,
Introduction to Modelling and Control of Internal Combustion Engine Systems
,
Springer
, Heidelberg, Germany.
36.
Orosz
,
G.
,
Wilson
,
R. E.
, and
Stépán
,
G.
,
2010
, “
Traffic Jams: Dynamics and Control
,”
Philos. Trans. R. Soc.
, A,
368
(
1928
), pp.
4455
4479
.
37.
Hestenes
,
M. R.
,
1966
,
Calculus of Variations and Optimal Control Theory
,
Wiley
, Hoboken, NJ.
38.
Krener
,
A. J.
,
1977
, “
The High Order Maximal Principle and Its Application to Singular Extremals
,”
SIAM J. Control Optim.
,
15
(
2
), pp.
256
293
.
39.
Stoer
,
J.
,
Bulirsch
,
R.
,
Bartels
,
R.
,
Gautschi
,
W.
, and
Witzgall
,
C.
,
1993
,
Introduction to Numerical Analysis
, Vol.
2
,
Springer
, Heidelberg, Germany.
40.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
41.
Gay
,
D. M.
, and
Kernighan
,
B.
,
2002
,
AMPL: A Modeling Language for Mathematical Programming
, second edition,
Duxbury Press/Brooks/Cole
, Boston, MA.
42.
Allgower
,
E. E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
(Classics in Applied Mathematics), Vol.
45
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
43.
Rao
,
A. V.
,
2009
, “
Survey of Numerical Methods for Optimal Control
,”
Adv. Astronaut. Sci.
,
135
(
1
), pp.
497
528
.
44.
He
,
C. R.
, and
Orosz
,
G.
,
2014
, “
Fuel Consumption Optimization of Heavy-Duty Vehicles: An Analytical Approach
,”
ASME
Paper No. DSCC2014-6362.
45.
Roose
,
D.
, and
Szalai
,
R.
,
2007
, “
Continuation and Bifurcation Analysis of Delay Differential Equations
,”
Numerical Continuation Methods for Dynamical Systems
,
B.
Krauskopf
,
H.
Osinga
, and
J.
Galán-Vioque
, eds.,
Springer
, Heidelberg, Germany, pp.
359
399
.
46.
Mittelmann
,
H. D.
,
1986
, “
A Pseudo-Arclength Continuation Method for Nonlinear Eigenvalue Problems
,”
SIAM J. Numer. Anal.
,
23
(
5
), pp.
1007
1016
.
47.
Jorge
,
N.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
(Operations Research and Financial Engineering), Vol.
2
,
Springer
, Heidelberg, Germany.
You do not currently have access to this content.