In this paper, we first propose a fractional-order energy demand–supply system, with the background of the energy resources demand in the eastern regions of China and the energy resources supply in the western regions of China. Then, we confirm the energy resource attractor with a necessary condition about the existence of chaotic behaviors. By employing an improved version of Adams Bashforth Moulton algorithm, we use three cases with different fractional values to verify the necessary condition. Finally, chaos control of fractional-order energy demand–supply system is investigated by two different control strategies: a linear feedback control and an adaptive switching control strategy via a single control input. Numerical simulations show that the energy demand and import in Eastern China and energy supply in Western China are self-feedback controlled around the system’s equilibrium point.

References

References
1.
Sun
,
M.
,
Tian
,
L.
, and
Fu
,
Y.
,
2007
, “
An Energy Resources Demand-Supply System and Its Dynamical Analysis
,”
Chaos Solitons Fractals
,
32
(
1
), pp.
168
180
.
2.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
3.
Hu
,
G.
,
Li
,
X.
, and
Wang
,
Y.
,
2015
, “
Pattern Formation and Spatiotemporal Chaos in a Reaction-Diffusion Predator-Prey System
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
265
275
.
4.
Li
,
C.
, and
Chen
,
G.
,
2004
, “
Chaos in the Fractional Order Chen System and Its Control
,”
Chaos Solitons Fractals
,
22
(
3
), pp.
549
554
.
5.
Daftardar-Gejji
,
V.
, and
Bhalekar
,
S.
,
2010
, “
Chaos in Fractional Ordered Liu System
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1117
1127
.
6.
Sun
,
M.
,
Tian
,
L.
, and
Yin
,
J.
,
2006
, “
Hopf Bifurcation Analysis of the Energy Resource Chaotic System
,”
Int. J. Nonlinear Sci.
,
1
(
1
), pp.
49
53
.
7.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
(
Mathematics in Science and Engineering
), Vol.
198
,
Academic Press
,
San Diego, CA
.
8.
Zubair
,
M.
,
Mughal
,
M. J.
, and
Naqvi
,
Q. A.
,
2011
, “
On Electromagnetic Wave Propagation in Fractional Space
,”
Nonlinear Anal. Real World Appl.
,
12
(
5
), pp.
2844
2850
.
9.
Tarasov
,
V. E.
, and
Trujillo
,
J. J.
,
2013
, “
Fractional Power-Law Spatial Dispersion in Electrodynamics
,”
Ann. Phys.
,
334
, pp.
1
23
.
10.
Wu
,
B.
, and
Wu
,
S.
,
2014
, “
Existence and Uniqueness of an Inverse Source Problem for a Fractional Integrodifferential Equation
,”
Comput. Math. Appl.
,
68
(
10
), pp.
1123
1136
.
11.
Luo
,
Y.
,
Chen
,
Y.
, and
Pi
,
Y.
,
2011
, “
Experimental Study of Fractional Order Proportional Derivative Controller Synthesis for Fractional Order Systems
,”
Mechatronics
,
21
(
1
), pp.
204
214
.
12.
Shen
,
Y. J.
,
Wei
,
P.
, and
Yang
,
S. P.
,
2014
, “
Primary Resonance of Fractional-Order Vander Pol Oscillator
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1629
1642
.
13.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
,
Nigmatullin
,
R.
, and
Golmankhaneh
,
A. K.
,
2010
, “
Fractional Newtonian Mechanics
,”
Open Phys.
,
8
(
1
), pp.
120
125
.
14.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
15.
Liu
,
W. J.
, and
Chen
,
K. W.
,
2015
, “
Chaotic Behavior in a New Fractional-Order Love Triangle System With Competition
,”
J. Appl. Anal. Comput.
,
5
(
1
), pp.
103
113
.
16.
Chen
,
K. W.
,
Liu
,
W. J.
, and
Park
,
J. K.
,
2016
, “
Modified Models for Love and Their Dynamical Properties
,”
Miskolc Math. Notes
,
17
(
1
), pp.
119
132
.
17.
Wang
,
Z.
,
Huang
,
X.
, and
Shi
,
G.
,
2011
, “
Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1531
1539
.
18.
Wu
,
G. C.
, and
Baleanu
,
D.
,
2014
, “
Chaos Synchronization of the Discrete Fractional Logistic Map
,”
Signal Process.
,
102
(
9
), pp.
96
99
.
19.
Wu
,
G. C.
,
Baleanu
,
D.
, and
Zeng
,
S. D.
,
2014
, “
Discrete Chaos in Fractional Sine and Standard Maps
,”
Phys. Lett. A
,
378
(
5–6
), pp.
484
487
.
20.
Wu
,
G. C.
, and
Baleanu
,
D.
,
2014
, “
Discrete Fractional Logistic Map and Its Chaos
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
283
287
.
21.
Zhang
,
R.
, and
Yang
,
S.
,
2011
, “
Response to the Comments on “Adaptive Synchronization of Fractional-Order Chaotic Systems Via a Single Driving Variable
,””
Nonlinear Dyn.
,
66
(
4
), pp.
843
844
.
22.
Li
,
S.-J.
, and
Respondek
,
W.
,
2015
, “
Orbital Feedback Linearization for Multi-Input Control Systems
,”
Int. J. Robust Nonlinear Control
,
25
(
9
), pp.
1352
1378
.
23.
Xue
,
Y.-M.
,
Zheng
,
B.-C.
, and
Ye
,
D.
,
2015
, “
Quantized Feedback Control Design of Nonlinear Large-Scale Systems Via Decentralized Adaptive Integral Sliding Mode Control
,”
Math. Probl. Eng.
,
2015
, p.
718924
.
24.
Yin
,
C.
,
Dadras
,
S.
, and
Zhong
,
S.
,
2012
, “
Design an Adaptive Sliding Mode Controller for Drive-Response Synchronization of Two Different Uncertain Fractional-Order Chaotic Systems With Fully Unknown Parameters
,”
J. Franklin Inst.
,
349
(
10
), pp.
3078
3101
.
25.
Yin
,
C.
,
Dadras
,
S.
,
Zhong
,
S.
, and
Chen
,
Y.-Q.
,
2013
, “
Control of a Novel Class of Fractional-Order Chaotic Systems Via Adaptive Sliding Mode Control Approach
,”
Appl. Math. Model.
,
37
(
4
), pp.
2469
2483
.
26.
Jia
,
H. Y.
,
Chen
,
Z. Q.
, and
Qi
,
G. Y.
,
2013
, “
Topological Horseshoe Analysis and Circuit Realization for a Fractional-Order Lü System
,”
Nonlinear Dyn.
,
74
(
1–2
), pp.
203
212
.
27.
Deng
,
W.
,
Li
,
C.
, and
,
J.
,
2007
, “
Stability Analysis of Linear Fractional Differential System With Multiple Time Delays
,”
Nonlinear Dyn.
,
48
(
4
), pp.
409
416
.
28.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional Order Systems
,”
Physica D
,
237
(
20
), pp.
2628
2637
.
29.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
3
22
.
30.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.
31.
He
,
J. H.
,
1997
, “
A New Approach to Nonlinear Partial Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
2
(
4
), pp.
230
235
.
32.
Matouk
,
A. E.
,
2011
, “
Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol-Duffing Circuit
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
2
), pp.
975
986
.
33.
Wang
,
X. Y.
, and
Wang
,
M. J.
,
2007
, “
Dynamic Analysis of the Fractional-Order Liu System and Its Synchronization
,”
Chaos
,
17
(
3
), p.
033106
.
34.
Haghighi
,
A. R.
,
2014
, “
Robust Stabilization of a Class of Three-Dimensional Uncertain Fractional-Order Non-Autonomous Systems
,”
Int. J. Ind. Math.
,
6
(
2
), pp.
133
139
.
35.
Aghababa
,
M. P.
,
Haghighi
,
A. R.
, and
Roohi
,
M.
,
2015
, “
Stabilisation of Unknown Fractional-Order Chaotic Systems: An Adaptive Switching Control Strategy With Application to Power Systems
,”
IET Gener. Transm. Distrib.
,
9
(
14
), p.
1883
.
36.
Weitzner
,
H.
, and
Zaslavsky
,
G. M.
,
2003
, “
Some Applications of Fractional Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
8
(
3–4
), pp.
273
281
.
You do not currently have access to this content.