When deoxyribonucleic (DNA), held at a fixed tension, is subjected to torsional deformations, it responds by forming plectonemic supercoils accompanied by a reduction in its end-to-end extension. This transition from the extended state to the supercoiled state is marked by an abrupt buckling of the DNA accompanied by a rapid “hopping” of the DNA between the extended and supercoiled states. This transition is studied by means of Brownian dynamics simulations using a discrete wormlike-chain (dWLC) model of DNA. The simulations reveal, among other things, the distinct regimes that occur during DNA supercoiling and the probabilities of states within the buckling transition regime.

References

References
1.
Marko
,
J.
, and
Siggia
,
E.
,
1995
, “
Statistical Mechanics of Supercoiled DNA
,”
Phys. Rev. E
,
52
(
3
), pp.
2912
2938
.
2.
Jian
,
H.
,
Schlick
,
T.
, and
Vologodskii
,
A.
,
1998
, “
Internal Motion of Supercoiled DNA: Brownian Dynamics Simulations of Site Juxtaposition
,”
J. Mol. Biol.
,
284
(
2
), pp.
287
296
.
3.
Huang
,
J.
,
Schlick
,
T.
, and
Vologodskii
,
A.
,
2001
, “
Dynamics of Site Juxtaposition in Supercoiled DNA
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
3
), pp.
968
973
.
4.
Merlitz
,
H.
,
Rippe
,
K.
,
Klenin
,
K. V.
, and
Langowski
,
J.
,
1998
, “
Looping Dynamics of Linear DNA Molecules and the Effect of DNA Curvature: A Study by Brownian Dynamics Simulation
,”
Biophys. J.
,
74
(
2 Pt. 1
), pp.
773
779
.
5.
Afra
,
R.
, and
Todd
,
B. A.
,
2013
, “
Kinetics of Loop Formation in Worm-Like Chain Polymers
,”
J. Chem. Phys.
,
138
(
17
), p.
174908
.
6.
Travers
,
A.
, and
Muskhelishvili
,
G.
,
2007
, “
A Common Topology for Bacterial and Eukaryotic Transcription Initiation?
EMBO Rep.
,
8
(
2
), pp.
147
151
.
7.
Zechiedrich
,
E. L.
,
Khodursky
,
A. B.
,
Bachellier
,
S.
,
Schneider
,
R.
,
Chen
,
D.
,
Lilley
,
D. M.
, and
Cozzarelli
,
N. R.
,
2000
, “
Roles of Topoisomerases in Maintaining Steady-State DNA Supercoiling in Escherichia coli
,”
J. Biol. Chem.
,
275
(
11
), pp.
8103
8113
.
8.
Samul
,
R.
, and
Leng
,
F.
,
2007
, “
Transcription-Coupled Hypernegative Supercoiling of Plasmid DNA by T7 RNA Polymerase in Escherichia coli Topoisomerase I-Deficient Strains
,”
J. Mol. Biol.
,
374
(
4
), pp.
925
935
.
9.
Ma
,
J.
, and
Wang
,
M.
,
2014
, “
Interplay Between DNA Supercoiling and Transcription Elongation
,”
Transcription
,
5
(
3
), pp.
1
4
.
10.
Forth
,
S.
,
Deufel
,
C.
,
Sheinin
,
M.
,
Daniels
,
B.
,
Sethna
,
J.
, and
Wang
,
M.
,
2008
, “
Abrupt Buckling Transition Observed During the Plectoneme Formation of Individual DNA Molecules
,”
Phys. Rev. Lett.
,
100
(
14
), p.
148301
.
11.
Brutzer
,
H.
,
Luzzietti
,
N.
,
Klaue
,
D.
, and
Seidel
,
R.
,
2010
, “
Energetics at the DNA Supercoiling Transition
,”
Biophys. J.
,
98
(
7
), pp.
1267
1276
.
12.
Marko
,
J. F.
, and
Neukirch
,
S.
,
2012
, “
Competition Between Curls and Plectonemes Near the Buckling Transition of Stretched Supercoiled DNA
,”
Phys. Rev. E
,
85
(
1
), p.
011908
.
13.
Baranello
,
L.
,
Levens
,
D.
,
Gupta
,
A.
, and
Kouzine
,
F.
,
2012
, “
The Importance of Being Supercoiled: How DNA Mechanics Regulate Dynamic Processes
,”
Biochim. Biophys. Acta
,
1819
(
7
), pp.
632
638
.
14.
Corbett
,
K. D.
, and
Berger
,
J. M.
,
2004
, “
Structure, Molecular Mechanisms, and Evolutionary Relationships in DNA Topoisomerases
,”
Annu. Rev. Biophys. Biomol. Struct
,
33
(
1
), pp.
95
118
.
15.
Moroz
,
J. D.
, and
Nelson
,
P.
,
1997
, “
Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
26
), pp.
14418
14422
.
16.
Moroz
,
J.
, and
Nelson
,
P.
,
1998
, “
Entropic Elasticity of Twist-Storing Polymers
,”
Macromolecules
,
31
(
18
), pp.
6333
6347
.
17.
Seol
,
Y.
,
Zhang
,
H.
,
Pommier
,
Y.
, and
Neuman
,
K. C.
,
2012
, “
A Kinetic Clutch Governs Religation by Type IB Topoisomerases and Determines Camptothecin Sensitivity
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
40
), pp.
16125
16130
.
18.
Strick
,
T.
,
Allemand
,
J.
,
Croquette
,
V.
, and
Bensimon
,
D.
,
2000
, “
Twisting and Stretching Single DNA Molecules
,”
Prog. Biophys. Mol. Biol.
,
74
(
1–2
), pp.
115
140
.
19.
Koster
,
D. A.
,
Czerwinski
,
F.
,
Halby
,
L.
,
Crut
,
A.
,
Vekhoff
,
P.
,
Palle
,
K.
,
Arimondo
,
P. B.
, and
Dekker
,
N. H.
,
2008
, “
Single-Molecule Observations of Topotecan-Mediated TopIB Activity at a Unique DNA Sequence
,”
Nucl. Acids Res.
,
36
(
7
), pp.
2301
2310
.
20.
Goshen
,
E.
,
Zhao
,
W.
,
Carmon
,
G.
,
Rosen
,
S.
,
Granek
,
R.
, and
Feingold
,
M.
,
2005
, “
Relaxation Dynamics of a Single DNA Molecule
,”
Phys. Rev. E
,
71
(
6
), p.
061920
.
21.
Zlatanova
,
J.
,
McAllister
,
W. T.
,
Borukhov
,
S.
, and
Leuba
,
S. H.
,
2006
, “
Single-Molecule Approaches Reveal the Idiosyncrasies of RNA Polymerases
,”
Structure
,
14
(
6
), pp.
953
966
.
22.
Crut
,
A.
,
Koster
,
D. A.
,
Seidel
,
R.
,
Wiggins
,
C. H.
, and
Dekker
,
N. H.
,
2007
, “
Fast Dynamics of Supercoiled DNA Revealed by Single-Molecule Experiments
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
29
), pp.
11957
11962
.
23.
Koster
,
D. A.
,
Crut
,
A.
,
Shuman
,
S.
,
Bjornsti
,
M.-A.
, and
Dekker
,
N. H.
,
2010
, “
Cellular Strategies for Regulating DNA Supercoiling: A Single-Molecule Perspective
,”
Cell
,
142
(
4
), pp.
519
530
.
24.
Daniels
,
B.
,
Forth
,
S.
,
Sheinin
,
M.
,
Wang
,
M.
, and
Sethna
,
J.
,
2009
, “
Discontinuities at the DNA Supercoiling Transition
,”
Phys. Rev. E
,
80
(
4
), p.
040901
.
25.
Vilfan
,
I. D.
,
Lipfert
,
J.
,
Koster
,
D. A.
,
Lemay
,
S. G.
, and
Dekker
,
N. H.
,
2009
, “
Magnetic Tweezers for Single-Molecule Experiments
,”
Handbook of Single-Molecule Biophysics
,
Springer-Verlag
,
New York
, Chap. 13, pp.
371
396
.
26.
van Loenhout
,
M. T. J.
,
de Grunt
,
M. V.
, and
Dekker
,
C.
,
2012
, “
Dynamics of DNA Supercoils
,”
Science
,
338
(
6103
), pp.
94
97
.
27.
Ivenso
,
I. D.
, and
Lillian
,
T. D.
,
2014
, “
Brownian Dynamics Simulation of the Dynamics of Stretched DNA
,”
ASME
Paper No. DETC2014-35487.
28.
Ivenso
,
I. D.
, and
Lillian
,
T. D.
,
2015
, “
The Dynamics of DNA Supercoiling: A Brownian Dynamics Study
,”
ASME
Paper No. DETC2015-47444.
29.
Klenin
,
K.
,
Merlitz
,
H.
, and
Langowski
,
J.
,
1998
, “
A Brownian Dynamics Program for the Simulation of Linear and Circular DNA and Other Wormlike Chain Polyelectrolytes
,”
Biophys. J.
,
74
(
2 Pt. 1
), pp.
780
788
.
30.
Chirico
,
G.
, and
Langowski
,
J.
,
1996
, “
Brownian Dynamics Simulations of Supercoiled DNA With Bent Sequences
,”
Biophys. J.
,
71
(
2
), pp.
955
971
.
31.
Chirico
,
G.
, and
Langowski
,
J.
,
1994
, “
Kinetics of DNA Supercoiling Studied by Brownian Dynamics Simulation
,”
Biopolymers
,
34
(
3
), pp.
415
433
.
32.
Allison
,
S.
,
1986
, “
Brownian Dynamics Simulation of Wormlike Chains. Fluorescence Depolarization and Depolarized Light Scattering
,”
Macromolecules
,
19
(
1
), pp.
118
124
.
33.
Vologodskii
,
A.
,
2007
, “
Monte Carlo Simulation of DNA Topological Properties
,”
Topology in Molecular Biology
,
New York University
,
New York
, pp.
23
41
.
34.
Charvin
,
G.
,
Vologodskii
,
A.
,
Bensimon
,
D.
, and
Croquette
,
V.
,
2005
, “
Braiding DNA: Experiments, Simulations, and Models
,”
Biophys. J.
,
88
(
6
), pp.
4124
4136
.
35.
Klenin
,
K. V.
,
Vologodskii
,
A. V.
,
Anshelevich
,
V. V.
,
Dykhne
,
A. M.
, and
Frank-Kamenetskii
,
M. D.
,
1991
, “
Computer Simulation of DNA Supercoiling
,”
J. Mol. Biol.
,
217
(
3
), pp.
413
419
.
36.
Vologodskii
,
A.
,
2006
, “
Brownian Dynamics Simulation of Knot Diffusion Along a Stretched DNA Molecule
,”
Biophys. J.
,
90
(
5
), pp.
1594
1597
.
37.
Vologodskii
,
A.
,
2009
, “
Determining Protein-Induced DNA Bending in Force-Extension Experiments: Theoretical Analysis
,”
Biophys. J.
,
96
(
9
), pp.
3591
3599
.
38.
Vologodskii
,
A.
,
2006
, “
Simulation of Equilibrium and Dynamic Properties of Large DNA Molecules
,”
Computational Studies of RNA and DNA
,
Springer
,
Dordrecht, The Netherlands
, pp.
579
604
.
39.
Jian
,
H.
,
Vologodskii
,
A. V.
, and
Schlick
,
T.
,
1997
, “
A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long Linear DNA
,”
J. Comput. Phys.
,
136
(
1
), pp.
168
179
.
40.
Vologodskii
,
A.
, and
Cozzarelli
,
N.
,
1995
, “
Modeling of Long-Range Electrostatic Interactions in DNA
,”
Biopolymers
,
35
(
3
), pp.
289
296
.
41.
Mielke
,
S. P.
,
Fink
,
W. H.
,
Krishnan
,
V. V.
,
Grønbech Jensen
,
N.
, and
Benham
,
C. J.
,
2004
, “
Transcription-Driven Twin Supercoiling of a DNA Loop: A Brownian Dynamics Study
,”
J. Chem. Phys.
,
121
(
16
), pp.
8104
8112
.
42.
Rotne
,
J.
, and
Prager
,
S.
,
1969
, “
Variational Treatment of Hydrodynamic Interaction in Polymers
,”
J. Chem. Phys.
,
50
(
11
), pp.
4831
4837
.
43.
Wajnryb
,
E.
,
Mizerski
,
K. A.
,
Zuk
,
P. J.
, and
Szymczak
,
P.
,
2013
, “
Generalization of the Rotne–Prager–Yamakawa Mobility and Shear Disturbance Tensors
,”
J. Fluid Mech.
,
731
, p.
R3(1–12)
.
44.
Iniesta
,
A.
, and
de la Torre
,
J.
,
1990
, “
A Second-Order Algorithm for the Simulation of the Brownian Dynamics of Macromolecular Models
,”
J. Chem. Phys.
,
92
(
3
), pp.
2015
2018
.
45.
Ermak
,
D. L.
, and
McCammon
,
J. A.
,
1978
, “
Brownian Dynamics With Hydrodynamic Interactions
,”
J. Chem. Phys.
,
69
(
4
), pp.
1352
1360
.
46.
Marko
,
J.
,
2007
, “
Torque and Dynamics of Linking Number Relaxation in Stretched Supercoiled DNA
,”
Phys. Rev. E
,
76
(
2
), p.
021926
.
47.
Daniels
,
B. C.
, and
Sethna
,
J. P.
,
2011
, “
Nucleation at the DNA Supercoiling Transition
,”
Phys. Rev. E
,
83
(
4
), p.
041924
.
You do not currently have access to this content.