This paper derives a new operational matrix of the variable-order (VO) time fractional partial derivative involved in anomalous diffusion for shifted Chebyshev polynomials. We then develop an accurate numerical algorithm to solve the 1 + 1 and 2 + 1 VO and constant-order fractional diffusion equation with Dirichlet conditions. The contraction of the present method is based on shifted Chebyshev collocation procedure in combination with the derived shifted Chebyshev operational matrix. The main advantage of the proposed method is to investigate a global approximation for spatial and temporal discretizations, and it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, we analyze the convergence of the present method graphically. Finally, comparisons between the algorithm derived in this paper and the existing algorithms are given, which show that our numerical schemes exhibit better performances than the existing ones.

References

References
1.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
2.
Schiessel
,
H.
,
Metzler
,
R.
,
Blumen
,
A.
, and
Nonnenmacher
,
T. F.
,
1995
, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions
,”
J. Phys. A: Math. Gen.
,
28
(
23
), pp.
6567
6584
.
3.
Vinagre
,
B. M.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
,
2000
, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fractional Calculus Appl. Anal.
,
3
(
3
), pp.
231
248
.
4.
Magin
,
R. L.
,
2004
, “
Fractional Calculus in Bioengineering, Part 1
,”
Crit. Rev. Biomed. Eng.
,
32
(
1
), pp.
1
140
.
5.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific Publishing
,
Hackensack, NJ
.
6.
Gorenflo
,
R.
,
Mainardi
,
F.
,
Scalas
,
E.
, and
Raberto
,
M.
,
2001
, “
Fractional Calculus and Continuous-Time Finance, III: The Diffusion Limit
,”
Mathematical Finance
(Trends in Mathematics),
Birkhäuser
,
Basel, Switzerland
, pp.
171
180
.
7.
Diaz
,
G.
, and
Coimbra
,
C. F. M.
,
2009
, “
Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van der Pol Equation
,”
Nonlinear Dyn.
,
56
(
1–2
), pp.
145
157
.
8.
L'Espérance
,
D.
,
Coimbra
,
C. F.
,
Trolinger
,
J. D.
, and
Rangel
,
R. H.
,
2005
, “
Experimental Verification of Fractional History Effects on the Viscous Dynamics of Small Spherical Particles
,”
Exp. Fluids
,
38
(
1
), pp.
112
116
.
9.
Coimbra
,
C. F.
,
L'Espérance
,
D.
,
Lambert
,
A.
,
Trolinger
,
J. D.
, and
Rangel
,
R. H.
,
2006
, “
An Experimental Study on the History Effects in High-Frequency Stokes Flows
,”
J. Fluid Mech.
,
564
, pp.
361
393
.
10.
Kim
,
M.
, and
O
,
H
.
-C
.
,
2014
, “
Explicit Representation of Green's Function for Linear Fractional Differential Operator With Variable Coefficients
,”
J. Fractional Calculus Appl.
,
5
(
1
), pp.
26
36
.
11.
Gupta
,
S.
,
Kumar
,
D.
, and
Singh
,
J.
,
2015
, “
Numerical Study for Systems of Fractional Differential Equations Via Laplace Transform
,”
J. Egypt. Math. Soc.
,
23
(
2
), pp.
256
262
.
12.
Butera
,
S.
, and
Paola
,
M.
,
2015
, “
Mellin Transform Approach for the Solution of Coupled Systems of Fractional Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
1
), pp.
32
38
.
13.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
(
Mathematics in Science and Engineering
, Vol.
198
),
Academic Press
,
San Diego, CA
.
14.
Bhrawy
,
A. H.
,
2016
, “
A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion
,”
Proc. Rom. Acad., Ser. A
,
17
, pp.
39
47
.
15.
Wu
,
G. C.
,
Baleanu
,
D.
,
Zeng
,
S. D.
, and
Deng
,
Z. G.
,
2015
, “
Discrete Fractional Diffusion Equation
,”
Nonlinear Dyn.
,
80
, pp.
281
286
.
16.
Wu
,
G. C.
,
Baleanu
,
D.
,
Xie
,
H. P.
, and
Zeng
,
S. D.
,
2015
, “
Discrete Fractional Diffusion Equation of Chaotic Order
,”
Int. J. Bifurcation Chaos
,
24
, p.
1650013
.
17.
Dehghan
,
M.
,
Abbaszadeh
,
M.
, and
Mohebbi
,
A.
,
2016
, “
Analysis of a Meshless Method for the Time Fractional Diffusion-Wave Equation
,”
Numer. Algorithms
.
18.
Bhrawy
,
A. H.
,
Taha
,
T. M.
, and
Machado
,
J. A. T
.
,
2015
, “
A Review of Operational Matrices and Spectral Techniques for Fractional Calculus
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1023
1052
.
19.
Bhrawy
,
A. H.
, and
Zaky
,
M. A.
,
2015
, “
Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation
,”
Nonlinear Dyn.
,
80
(
1
), pp.
101
116
.
20.
Bhrawy
,
A. H.
,
2016
, “
A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations
,”
Numerical Algorithms
.
21.
Wang
,
Y. M.
,
2015
, “
A Compact Finite Difference Method for a Class of Time Fractional Convection-Diffusion-Wave Equations With Variable Coefficients
,”
Numer. Algorithms
,
70
(
3
), pp.
625
651
.
22.
Ma
,
J.
,
Liu
,
J.
, and
Zhou
,
Z.
,
2014
, “
Convergence Analysis of Moving Finite Element Methods for Space Fractional Differential Equations
,”
J. Comput. Appl. Math.
,
255
(
1
), pp.
661
670
.
23.
Garg
,
M.
, and
Manohar
,
P.
,
2014
, “
Matrix Method for Numerical Solution of Space-Time Fractional Diffusion-Wave Equations With Three Space Variables
,”
Afr. Mat.
,
25
(
1
), pp.
161
181
.
24.
Bhrawy
,
A. H.
,
Zaky
,
M. A.
, and
Gorder
,
R. A. V
.
,
2016
, “
A Space-Time Legendre Spectral Tau Method for the Two-Sided Space-Time Caputo Fractional Diffusion-Wave Equation
,”
Numer. Algorithms
,
71
(
1
), pp.
151
180
.
25.
Pedas
,
A.
, and
Tamme
,
E.
,
2014
, “
Numerical Solution of Nonlinear Fractional Differential Equations by Spline Collocation Methods
,”
J. Comput. Appl. Math.
,
255
(
1
), pp.
216
230
.
26.
Bhrawy
,
A. H.
,
Doha
,
E. H.
,
Ezz-Eldien
,
S. S.
, and
Abdelkawy
,
M. A.
,
2016
, “
A Numerical Technique Based on the Shifted Legendre Polynomials for Solving the Time-Fractional Coupled KdV Equation
,”
Calcolo
,
53
(
1
), pp.
1
17
.
27.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
, and
Golmankhaneh
,
A. K.
,
2009
, “
Solving of the Fractional Non-Linear and Linear Schrodinger Equations by Homotopy Perturbation Method
,”
Rom. J. Phys.
,
54
(
10
), pp.
823
832
.
28.
Bhrawy
,
A. H.
, and
Alofi
,
A. S.
,
2013
, “
The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials
,”
Appl. Math. Lett.
,
26
(
1
), pp.
25
31
.
29.
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2016
, “
A New Legendre Operational Technique for Delay Fractional Optimal Control Problems
,”
Calcolo
(published online).
30.
Abdelkawy
,
M. A.
,
Ezz-Eldien
,
S. S.
, and
Amin
,
A. Z. M
.
,
2015
, “
Jacobi Spectral Collocation Scheme for Solving Abel's Integral Equations
,”
Prog. Fractional Differ. Appl.
,
1
(
3
), pp.
1
14
.
31.
Samko
,
S. G.
, and
Ross
,
B.
,
1993
, “
Integration and Differentiation to a Variable Fractional Order
,”
Integr. Transforms Spec. Funct.
,
1
(
4
), pp.
277
300
.
32.
Samko
,
S
.
,
2013
, “
Fractional Integration and Differentiation of Variable Order: An Overview
,”
Nonlinear Dyn.
,
71
(
4
), pp.
653
662
.
33.
Valerio
,
D.
, and
Sa da Costa
,
J.
,
2013
, “
Variable Order Fractional Controllers
,”
Asian J. Control
,
15
(
3
), pp.
648
657
.
34.
Soon
,
C. M.
,
Coimbra
,
C. F. M
.
, and
Kobayashi
,
M. H.
,
2005
, “
The Variable Viscoelasticity Oscillator
,”
Ann. Phys.
,
14
(
6
), pp.
378
389
.
35.
Gerasimov
,
D. N.
,
Kondratieva
,
V. A.
, and
Sinkevich
,
O. A.
,
2010
, “
An Anomalous Non-Self-Similar Infiltration and Fractional Diffusion Equation
,”
Physica D
,
239
(
16
), pp.
1593
1597
.
36.
Chen
,
W.
,
Zhang
,
J.
, and
Zhang
,
J.
,
2013
, “
A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures
,”
Fractional Calculus Appl. Anal.
,
16
(
1
), pp.
76
92
.
37.
Shen
,
S.
,
Liu
,
F.
,
Anh
,
V.
,
Turner
,
I.
, and
Chen
,
J.
,
2013
, “
A Characteristic Difference Method for the Variable-Order Fractional Advection-Diffusion Equation
,”
J. Appl. Math. Comput.
,
42
(
1–2
), pp.
371
386
.
38.
Zhao
,
X.
,
Sun
,
Z.-z.
, and
Karniadakis
,
G. E.
,
2015
, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications
,”
J. Comput. Phys.
,
293
, pp.
184
200
.
39.
Abdelkawy
,
M. A.
,
Zaky
,
M. A.
,
Bhrawy
,
A. H.
, and
Baleanu
,
D.
,
2015
, “
Numerical Simulation of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model
,”
Rom. Rep. Phys.
,
67
(
3
), pp.
773
791
.
40.
Sun
,
H.
,
Chen
,
W.
,
Li
,
C.
, and
Chen
,
Y.
,
2012
, “
Finite Difference Schemes for Variable-Order Time Fractional Diffusion Equation
,”
Int. J. Bifurcation Chaos
,
22
(
4
), p.
1250085
.
41.
Fu
,
Z. J.
,
Chen
,
W.
, and
Ling
,
L.
,
2015
, “
Method of Approximate Particular Solutions for Constant- and Variable-Order Fractional Diffusion Models
,”
Eng. Anal. Boundary Elem.
,
57
(
8
), pp.
37
46
.
You do not currently have access to this content.