This article presents a numerical method based on the Adams–Bashforth–Moulton scheme to solve variable-order fractional delay differential equations (VFDDEs). In these equations, the variable-order (VO) fractional derivatives are described in the Caputo sense. The existence and uniqueness of the solutions are proved under Lipschitz condition. Numerical examples are presented showing the applicability and efficiency of the novel method.

References

References
1.
Tenreiro Machado
,
J. A.
,
2012
, “
The Effect of Fractional Order in Variable Structure Control
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3340
3350
.
2.
Gutiérrez
,
R. E.
,
Rosário
,
J. M.
, and
Tenreiro Machado
,
J. A.
,
2010
, “
Fractional Order Calculus: Basic Concepts and Engineering Applications
,”
Math. Probl. Eng.
,
2010
, p.
375858
.
3.
Pinto
,
C. M. A.
, and
Tenreiro Machado
,
J. A.
,
2011
, “
Complex Order van der Pol Oscillator
,”
Nonlinear Dyn.
,
65
(
3
), pp.
247
254
.
4.
Bhrawy
,
A. H.
,
Baleanu
,
D.
,
Assas
,
L. M.
, and
Tenreiro Machado
,
J. A.
,
2013
, “
On a Generalized Laguerre Operational Matrix of Fractional Integration
,”
Math. Probl. Eng.
,
2013
, p.
569286
.
5.
Bhrawy
,
A. H.
,
Zaky
,
M. A.
, and
Tenreiro Machado
,
J. A.
,
2015
, “
Efficient Legendre Spectral Tau Algorithm for Solving the Two-Sided Space-Time Caputo Fractional Advection-Dispersion Equation
,”
J. Vib. Control
,
22
(8), pp.
2053
2068
.
6.
Bhrawy
,
A. H.
,
Taha
,
T. M.
, and
Tenreiro Machado
,
J. A.
,
2015
, “
A Review of Operational Matrices and Spectral Techniques for Fractional Calculus
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1023
1052
.
7.
Bhrawy
,
A. H.
,
Doha
,
E. H.
, and
Tenreiro Machado
,
J. A.
,
2015
, “
An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index
,”
Asian J. Control
,
17
(
6
), pp.
2389
2402
.
8.
Moghaddam
,
B. P.
, and
Aghili
,
A.
,
2012
, “
A Numerical Method for Solving Linear Non-Homogenous Fractional Ordinary Differential Equation
,”
Appl. Math. Inf. Sc.
,
6
(
3
), pp.
441
445
.
9.
Lazarevic
,
M. P.
, and
Debeljkovic
,
D. L.
,
2008
, “
Finite Time Stability Analysis of Linear Autonomous Fractional Order Systems With Delayed State
,”
Asian J. Control
,
7
(
4
), pp.
440
447
.
10.
Zhen
,
W.
,
Xia
,
H.
, and
Guodong
,
S.
,
2011
, “
Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1531
1539
.
11.
Bhalekar
,
S.
,
Daftardar-Gejji
,
V.
,
Baleanu
,
D.
, and
Magin
,
R.
,
2012
, “
Generalized Fractional Order Bloch Equation With Extended Delay
,”
Int. J. Bifurcation Chaos
,
22
(
4
), pp.
1
15
.
12.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.
13.
Si-Ammour
,
A.
,
Djennoune
,
S.
, and
Bettayeb
,
M.
,
2009
, “
A Sliding Mode Control for Linear Fractional Systems With Input and State Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2310
2318
.
14.
Sheng
,
H.
,
Chen
,
Y. Q.
, and
Qiu
,
T.
,
2011
,
Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications
,
Springer
,
London, UK
.
15.
Coimbra
,
C. F. M.
,
2003
, “
Mechanics With Variable Order Differential Operators
,”
Ann. Phys. (Leipzig)
,
12
(
11–12
), pp.
692
703
.
16.
Sun
,
H. G.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2009
, “
Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling
,”
Physica A
,
388
(
21
), pp.
4586
4592
.
17.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
,
2005
, “
Application of Differential Operator With Servo-Order Function in Model of Viscoelastic Deformation Process
,”
J. Eng. Mech.
,
131
(
7
), pp.
763
767
.
18.
Daftardar-Gejji
,
V.
,
Sukale
,
Y.
, and
Bhalekar
,
S.
,
2015
, “
Solving Fractional Delay Differential Equations: A New Approach
,”
Fractional Calculus Appl. Anal.
,
18
(
2
), pp.
400
418
.
19.
Wang
,
Z.
,
2011
, “
A Numerical Method for Delayed Fractional-Order Differential Equations
,”
J. Appl. Math.
,
7
, p.
256071
.
20.
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2011
, “
A Predictor–Corrector Scheme for Solving Non-Linear Delay Differential Equations of Fractional Order
,”
J. Fractional Calculus Appl.
,
1
(
5
), pp.
1
9
.
21.
Moghaddam
,
B. P.
, and
Mostaghim
,
Z. S.
,
2015
, “
A Matrix Scheme Based on Fractional Finite Difference Method for Solving Fractional Delay Differential Equations With Boundary Conditions
,”
New Trends Math. Sci.
,
3
(
2
), pp.
13
23
.
22.
Moghaddam
,
B. P.
, and
Mostaghim
,
Z. S.
,
2013
, “
Numerical Method Based on Finite Difference for Solving Fractional Delay Differential Equations
,”
J. Taibah Univ. Sci.
,
7
(
3
), pp.
120
127
.
23.
Moghaddam
,
B. P.
, and
Mostaghim
,
Z. S.
,
2014
, “
A Novel Matrix Approach to Fractional Finite Difference for Solving Models Based on Nonlinear Fractional Delay Differential Equations
,”
Ain Shams Eng. J.
,
5
(
2
), pp.
585
594
.
24.
Morgado
,
M. L.
,
Ford
,
N. J.
, and
Lima
,
P. M.
,
2013
, “
Analysis and Numerical Methods for Fractional Differential Equations With Delay
,”
J. Comput. Appl. Math.
,
252
, pp.
159
168
.
25.
Saeed
,
U.
, and
Rehman
,
M. U.
,
2014
, “
Hermite Wavelet Method for Fractional Delay Differential Equations
,”
J. Differ. Equation
,
2014
, pp.
1
8
.
26.
Xu
,
Y.
, and
Suat Erturk
,
V.
,
2014
, “
A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations
,”
Bull. Iran. Math. Soc.
,
40
(
3
), pp.
699
712
.
27.
Bhrawy
,
A. H.
, and
Zaky
,
M. A.
,
2015
, “
Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation
,”
Nonlinear Dyn.
,
80
(
1
), pp.
101
116
.
28.
Valerio
,
D.
, and
da Costa
,
J. S.
,
2011
, “
Variable-Order Fractional Derivatives and Their Numerical Approximations
,”
Signal Process.
,
91
(
3
), pp.
470
483
.
29.
Zayernouri
,
M.
, and
Karniadakis
,
G. E.
,
2014
, “
Fractional Spectral Collocation Methods for Linear and Nonlinear Variable Order FPDEs
,”
J. Comput. Phys. A
,
293
, pp.
312
338
.
30.
Zhao
,
X.
,
Sun
,
Z. Z.
, and
Karniadakis
,
G. E.
,
2015
, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications
,”
J. Comput. Phys.
,
293
, pp.
312
338
.
31.
Sierociuk
,
D.
,
Malesza
,
W.
, and
Macias
,
M.
,
2015
, “
Numerical Schemes for Initialized Constant and Variable Fractional-Order Derivatives: Matrix Approach and Its Analog Verification
,”
J. Vib. Control
,
22
(8), pp.
2032
2044
.
32.
Sierociuk
,
D.
,
Malesza
,
W.
, and
Macias
,
M.
,
2015
, “
Derivation, Interpretation, and Analog Modeling of Fractional Variable Order Derivative Definition
,”
Appl. Math. Model.
,
39
(
13
), pp.
3876
3888
.
33.
Samko
,
S. G.
, and
Ross
,
B.
,
1993
, “
Integration and Differentiation to a Variable Fractional Order
,”
Integr. Transform. Spec. Funct.
,
1
(
4
), pp.
277
300
.
34.
Samko
,
S. G.
,
1995
, “
Fractional Integration and Differentiation of Variable Order
,”
Ann. Math.
,
21
(
3
), pp.
213
236
.
35.
Soon
,
C. M.
,
Coimbra
,
C. F. M.
, and
Kobayashi
,
M. H.
,
2005
, “
The Variable Viscoelasticity Oscillator
,”
Ann. Phys. (Leipzig)
,
14
(
6
), pp.
378
388
.
36.
Swilam
,
N. H.
,
Nagy
,
A. M.
,
Assiri
,
T. A.
, and
Ali
,
N. Y.
,
2015
, “
Numerical Simulations for Variable-Order Fractional Nonlinear Delay Differential Equations
,”
J. Fractional Calculus Appl.
,
6
(
1
), pp.
71
82
.
37.
Smith
,
H.
,
2010
,
An Introduction to Delay Differential Equations With Sciences Applications to the Life
,
Springer
,
Berlin
.
38.
Pielou
,
E. C.
,
1969
,
An Introduction to Mathematical Ecology
,
Wiley
,
New York
.
39.
Kalecki
,
M.
,
1935
, “
A Macroeconomic Theory of Business Cycle
,”
Economic
,
3
(
3
), pp.
327
344
.
40.
Sun
,
H. G.
,
Chen
,
W.
,
Sheng
,
H.
, and
Chen
,
Y. Q.
,
2010
, “
On Mean Square Displacement Behaviors of Anomalous Diffusions With Variable and Random Orders
,”
Phys. Lett. A
,
374
(
7
), pp.
906
910
.
41.
Sun
,
H.
,
Chen
,
W.
,
Wei
,
H.
, and
Chen
,
Y.
,
2011
, “
A Comparative Study of Constant-Order and Variable-Order Fractional Models in Characterizing Memory Property of Systems
,”
Eur. Phys. J.
,
193
(
1
), pp.
185
192
.
42.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
Nonlinear Dyn.
,
29
(
1
), pp.
57
98
.
43.
Samiei
,
E.
,
Torkamani
,
S.
, and
Butcher
,
E. A.
,
2013
, “
On Lyapunov Stability of Scalar Stochastic Time-Delayed Systems
,”
Int. J. Dyn. Control
,
1
(
1
), pp.
64
80
.
44.
Alfredo
,
B.
, and
Zennaro
,
M.
,
2003
,
Numerical Methods for Delay Differential Equations
,
Oxford University Press
,
Oxford, UK
.
45.
Torkamani
,
S.
,
Samiei
,
E.
,
Bobrenkov
,
O.
, and
Butcher
,
E. A.
,
2014
, “
Numerical Stability Analysis of Linear Stochastic Delay Differential Equations Using Chebyshev Spectral Continuous Time Approximation
,”
Int. J. Dyn. Control
,
2
(
2
), pp.
210
220
.
You do not currently have access to this content.