The global analysis is very important for a nonlinear dynamical system which possesses a chaotic saddle and a nonchaotic attractor, especially for the one that is driven by a noise. For a random dynamical system, within which, chaotic saddles exist, it is found that if the noise intensity exceeds a critical value, the so called “noise-induced chaos” is observed. Meanwhile, the exit behavior is also found to be influenced significantly by the existence of chaotic saddles. In the present paper, based on the generalized cell-mapping digraph (GCMD) method, the global dynamical behaviors of a piecewise linear system, wherein a chaotic saddle exists and consists of subharmonic solutions in a wide frequency range, are investigated numerically. Further, in order to simplify the system that is driven by a Gaussian white noise excitation, the stochastic averaging method is applied and through which, a five-dimensional Itô system is obtained. Some of the global dynamical behaviors of the original system are retained in the averaged one and then are analyzed. The researches in this paper show that GCMD method is a good numerical tool to investigate the global behaviors of a nonlinear random dynamical system, and the stochastic averaging method is effective for solving the global problems.

References

References
1.
Roy
,
R. V.
,
1997
, “
Global Stability Analysis of Nonlinear Dynamical Systems
,”
Ser. Stab., Vib. Control Syst. Ser. B
,
9
, pp.
261
295
.
2.
Roy
,
R. V.
,
1994
, “
Averaging Method for Strongly Nonlinear Oscillators With Periodic Excitations
,”
Int. J. Non-Linear Mech.
,
29
(
5
), pp.
737
753
.
3.
Roy
,
R. V.
,
1995
, “
Noise-Induces Transitions in Weakly-Nonlinear Oscillators Near Resonance
,”
ASME J. Appl. Mech.
,
62
(
2
), pp.
496
504
.
4.
Roy
,
R. V.
,
1993
, “
Noise Perturbations of Nonlinear Dynamical Systems
,”
Computational Stochastic Mechanics
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
125
147
.
5.
Roy
,
R. V.
,
1995
, “
Large Deviation Theory, Weak-Noise Asymptotics, and First-Passage Problems: Review and Results
,”
Applications of Statistics and Probability
,
M.
Lemaire
,
J.-L.
Favre
, and
A.
Mebarki
, eds.,
A.A. Balkema
,
Rotterdam, The Netherlands
, pp.
1129
1135
.
6.
Roy
,
R. V.
,
1996
, “
Probabilistic Analysis of a Nonlinear Pendulum
,”
Acta Mech.
,
115
(1), pp.
87
101
.
7.
Roy
,
R. V.
,
1994
, “
Noise Perturbations of a Non-Linear System With Multiple Steady States
,”
Int. J. Non-Linear Mech.
,
29
(
5
), pp.
755
773
.
8.
Roy
,
R. V.
,
1996
, “
Asymptotic Analysis of First-Passage Problems
,”
Int. J. Non-Linear Mech.
,
32
(1), pp.
173
186
.
9.
Roy
,
R. V.
, and
Nauman
,
E.
,
1995
, “
Noise-Induced Effects on a Non-Linear Oscillator
,”
J. Sound Vib.
,
183
(
2
), pp.
269
295
.
10.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2010
, “
First Passage Failure of Quasi-Partial Integrable Generalized Hamiltonian Systems
,”
Int. J. Non-Linear Mech.
,
45
(
1
), pp.
56
62
.
11.
Zhu
,
W. Q.
, and
Wu
,
Y. J.
,
2003
, “
First-Passage Time of Doffing Oscillator Under Combined Harmonic and White-Noise Excitation
,”
Nonlinear Dyn.
,
32
(
3
), pp.
291
305
.
12.
Chen
,
L. C.
,
Deng
,
M. L.
, and
Zhu
,
W. Q.
,
2009
, “
First Passage Failure of Quasi Integrable-Hamiltonian Systems Under Combined Harmonic and White Noise Excitations
,”
Acta Mech.
,
206
(3), pp.
133
148
.
13.
Huang
,
Z. L.
,
Zhu
,
W. Q.
, and
Suzuki
,
Y.
,
2000
, “
Stochastic Averaging of Strongly Non-Linear Oscillators Under Combined Harmonic and White-Noise Excitations
,”
J. Sound Vib.
,
238
(
2
), pp.
233
256
.
14.
Wu
,
Y. J.
,
Luo
,
M.
, and
Zhu
,
W. Q.
,
2000
, “
First-Passage Failure of Strongly Nonlinear Oscillators Under Combined Harmonic and Real Noise Excitations
,”
Arch. Appl. Mech.
,
78
(7), pp.
501
515
.
15.
Rodrigues
,
C. S.
,
Grebogi
,
C.
, and
de Moura
,
A. P. S.
,
2010
, “
Escape From Attracting Sets in Randomly Perturbed Systems
,”
Phys. Rev. E
,
82
(
4
), p.
046217
.
16.
Kifer
,
Y.
,
1981
, “
The Exit Problem for Small Random Perturbations of Dynamical Systems With a Hyperbolic Fixed Point
,”
Isr. J. Math.
,
40
(
1
), pp.
74
96
.
17.
Guckenheimer
,
J.
,
1982
, “
Noise in Chaotic Systems
,”
Nature
,
298
(
5872
), pp.
358
361
.
18.
Djeundam
,
S. R. D.
,
Yamapi
,
R.
,
Kofane
,
T. C.
, and
Aziz-Alaoui
,
M. A.
,
2012
, “
Deterministic and Stochastic Bifurcations in the Hindmarsh-Rose Neuronal Model
,”
Chaos
,
23
(3), p.
033125
.
19.
Crutchfield
,
J. P.
,
Farmer
,
J. D.
, and
Huberman
,
B. A.
,
1982
, “
Fluctuations and Simple Chaotic Dynamics
,”
Phys. Rep. (Rev. Sec. Phys. Lett.)
,
92
(2), pp.
45
82
.
20.
Crutchfield
,
J. P.
, and
Huberman
,
B. A.
,
2013
, “
Fluctuations and the Onset of Chaos
,”
Phys. Lett. A
,
77
(6), pp.
407
410
.
21.
He
,
T.
, and
Habib
,
S.
, “
Chaos and Noise
,”
Chaos
,
23
(
3
), p.
033123
.
22.
Deissler
,
R. J.
, and
Farmer
,
J. D.
,
1992
, “
Deterministic Noise Amplifiers
,”
Phys. D
,
55
(1–2), pp.
155
165
.
23.
Ellner
,
S.
, and
Turchin
,
P.
,
1995
, “
Chaos in a Noisy World: New Methods and Evidence From Time-Series Analysis
,”
Am. Nat.
,
145
(
3
), pp.
343
375
.
24.
Soskin
,
S. M.
,
Mannella
,
R.
,
Arrayás
,
M.
, and
Silchenko
,
A. N.
,
2001
, “
Strong Enhancement of Noise-Induced Escape by Nonadiabatic Periodic Driving Due to Transient Chaos
,”
Phys. Rev. E
,
63
(
5
), p.
051111
.
25.
Tél
,
T.
,
Lai
,
Y. C.
, and
Gruiz
,
M.
,
2008
, “
Noise-Induced Chaos: A Consequence of Long Deterministic Transients
,”
Int. J. Bifurcation Chaos
,
18
(02), pp.
509
520
.
26.
Billings
,
L.
, and
Schwartz
,
I. B.
,
2002
, “
Exciting Chaos With Noise: Unexpected Dynamics in Epidemic Outbreaks
,”
J. Math. Biol.
,
44
(
1
), pp.
31
48
.
27.
Lai
,
Y. C.
,
Liu
,
Z.
,
Billings
,
L.
, and
Schwartz
,
I. B.
,
2003
, “
Noise-Induced Unstable Dimension Variability and Transition to Chaos in Random Dynamical Systems
,”
Phys. Rev. E
,
67
(
2
), p.
026210
.
28.
Armbruster
,
D.
,
Stone
,
E.
, and
Kirk
,
V.
,
2003
, “
Noisy Heteroclinic Networks
,”
Chaos
,
13
(
1
), pp.
71
79
.
29.
Kirk
,
V.
, and
Silber
,
M.
,
1994
, “
A Competition Between Heteroclinic Cycles
,”
Nonlinearity
,
7
(
6
), pp.
1605
1621
.
30.
Stone
,
E.
, and
Armbruster
,
D.
,
1999
, “
Noise and O(1) Amplitude Effects on Heteroclinic Cycles
,”
Chaos
,
9
(
2
), pp.
499
506
.
31.
Stone
,
E.
, and
Holmes
,
P.
,
1990
, “
Random Perturbation of Heteroclinic Attractors
,”
SIAM J. Appl. Math.
,
50
(
3
), pp.
726
743
.
32.
Zhou
,
C. S.
,
Kurths
,
J.
,
Allaria
,
E.
,
Boccaletti
,
S.
,
Meucci
,
R.
, and
Arecchi
,
F. T.
,
2003
, “
Constructive Effects of Noise on Homoclinic Chaotic Systems
,”
Phys. Rev. E
,
67
(
6
), p.
066220
.
33.
Tél
,
T.
, and
Lai
,
Y. C.
,
2010
, “
Quasipotential Approach to Critical Scaling in Noise-Induced Chaos
,”
Phys. Rev. E
,
81
(
5
), p.
056208
.
34.
Kraut
,
S.
, and
Feudel
,
U.
,
2003
, “
Noise-Induced Escape Through a Chaotic Saddle: Lowering of the Activation Energy
,”
Phys. D
,
181
(3–4), pp.
222
234
.
35.
Kraut
,
S.
, and
Feudel
,
U.
,
2003
, “
Enhancement of Noise-Induced Escape Through the Existence of a Chaotic Saddle
,”
Phys. Rev. E
,
67
(
1
), p.
015204
.
36.
Ibrahim
,
R. A.
,
2008
, “
Noise-Induced Transition in Ship Roll Oscillations
,”
Adv. Stud. Theor. Phys.
,
2
(
2
), pp.
51
69
.
37.
Hunt
,
B. R.
,
Ott
,
E.
, and
Yorke
,
J. A.
,
1996
, “
Fractal Dimensions of Chaotic Saddles of Dynamical Systems
,”
Phys. Rev. E
,
54
(
5
), pp.
4819
4823
.
38.
Kraut
,
S.
, and
Feudel
,
U.
,
2002
, “
Multistability, Noise, and Attractor Hopping: The Crucial Role of Chaotic Saddles
,”
Phys. Rev. E
,
66
, p.
015207
.
39.
Hong
,
L.
, and
Xu
,
J.
,
1999
, “
Crises and Chaotic Transients Studied by the Generalized Cell Mapping Digraph Method
,”
Phys. Lett. A
,
262
(4–5), pp.
361
375
.
40.
Hong
,
L.
, and
Xu
,
J.
,
2003
, “
Chaotic Saddles in Wada Basin Boundaries and Their Bifurcations by the Generalized Cell-Mapping Digraph (GCMD) Method
,”
Nonlinear Dyn.
,
32
(
4
), pp.
371
385
.
41.
Hong
,
L.
, and
Xu
,
J.
,
2004
, “
A Chaotic Crisis Between Chaotic Saddle and Attractor in Forced Duffing Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
9
(
3
), pp.
313
329
.
42.
Hsu
,
C. S.
,
1995
, “
Global Analysis of Dynamical Systems Using Posets and Digraphs
,”
Int. J. Bifurcation Chaos
,
5
(
4
), pp.
1085
1118
.
43.
Ling
,
H.
,
2010
, “
A Fuzzy Crisis in a Duffing-Van Der Pol System
,”
Chin. Phys. B
,
19
(
3
), p.
030513
.
44.
Hong
,
L.
, and
Sun
,
J.-Q.
,
2006
, “
Bifurcations of Fuzzy Nonlinear Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
1
), pp.
1
12
.
45.
Hong
,
L.
,
Zhang
,
Y.
, and
Jiang
,
J.
,
2010
, “
A Hyperchaotic Crisis
,”
Int. J. Bifurcation Chaos
,
20
(
4
), pp.
1193
1200
.
46.
Xu
,
W.
,
He
,
Q.
,
Fang
,
T.
, and
Rong
,
H.
,
2005
, “
Global Analysis of Crisis in Twin-Well Duffing System Under Harmonic Excitation in Presence of Noise
,”
Chaos, Solitons Fractals
,
23
(
1
), pp.
141
150
.
47.
Han
,
Q.
,
Xu
,
W.
,
Yue
,
X.
, and
Zhang
,
Y.
,
2015
, “
First-Passage Time Statistics in a Bistable System Subject to Poisson White Noise by the Generalized Cell Mapping Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
23
(1–3), pp.
220
228
.
48.
Han
,
Q.
,
Xu
,
W.
, and
Yue
,
X.
,
2014
, “
Global Bifurcation Analysis of a Duffing-Van Der Pol Oscillator With Parametric Excitation
,”
Int. J. Bifurcation Chaos
,
23
(
4
), p.
1450051
.
49.
Yue
,
X.
,
Xu
,
W.
, and
Zhang
,
Y.
,
2012
, “
Global Bifurcation Analysis of Rayleigh-Duffing Oscillator Through the Composite Cell Coordinate System Method
,”
Nonlinear Dyn.
,
69
(1), pp.
437
457
.
50.
Hailin
,
Z.
, and
JianXue
,
X.
,
2009
, “
Improved Generalized Cell Mapping for Global Analysis of Dynamical Systems
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
3
), pp.
787
800
.
51.
Hsu
,
C. S.
,
1987
,
Cell-to-Cell Mapping
,
Springer-Verlag
,
New York
.
52.
Sun
,
J. Q.
, and
Hsu
,
C. S.
,
1988
, “
First-Passage Time Probability of Non-Linear Stochastic Systems by Generalized Cell Mapping Method
,”
J. Sound Vib.
,
124
(
2
), pp.
233
248
.
53.
Hsu
,
C. S.
, and
Chiu
,
H. M.
,
1986
, “
A Cell Mapping Method for Nonlinear Deterministic and Stochastic Systems-Part I: The Method of Analysis
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
695
701
.
54.
Chiu
,
H. M.
, and
Hsu
,
C. S.
,
1986
, “
A Cell Mapping Method for Nonlinear Deterministic and Stochastic Systems-Part II: Examples of Application
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
702
710
.
55.
Xu
,
J.
,
2009
, “
Some Advances on Global Analysis of Nonlinear Systems
,”
Chaos, Solitons Fractals
,
39
(
4
), pp.
1839
1848
.
56.
Kong
,
C.
, and
Liu
,
X. B.
,
2014
, “
Research for Attracting Region and Exit Problem of a Piecewise Linear System Under Periodic and White Noise Excitations
,”
Chin. J. Theor. Appl. Mech.
,
46
(3), pp.
447
456
(in Chinese).
You do not currently have access to this content.