A method for trajectory tracking accuracy analysis of a two-link flexible manipulator with lubricated revolute joint involving interval uncertainty is presented. In this method, first, fuzzy self-tuning proportion integration differentiation (PID) control is applied to track the desired tip trajectory of the manipulator. The absolute nodal coordinate formulation (ANCF) is employed for the finite element discretization of the flexible manipulator. And lubricated revolute joint is modeled based on the infinitely short journal bearing with Gümbel conditions. Second, uncertainty of clearance size is considered, and interval analysis method is applied. Numerical simulation is posted to investigate the cushioning effect of lubricants on the clearance and influence of uncertainty on control accuracy of the manipulator. The results show that the lubricants can improve the stability of motion and operation precision of the manipulator; however, uncertainty of the manipulator may reduce the control accuracy of the manipulator.

References

References
1.
Flores
,
P.
, and
Ambrósio
,
J.
,
2004
, “
Revolute Joints With Clearance in Multibody Systems
,”
Comput. Struct.
,
82
, pp.
1359
1369
.
2.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2008
, “
Translational Joints With Clearance in Rigid Multibody Systems
,”
ASME J. Comput. Nonlin. Dyn.
,
3
(
1
), p.
011007
.
3.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlin. Dyn.
,
1
(
3
), pp.
240
247
.
4.
Pereira
,
C.
,
Ambrósio
,
J.
, and
Ramalho
,
A.
,
2015
, “
Dynamics of Chain Drives Using a Generalized Revolute Clearance Joint Formulation
,”
Mech. Mach. Theory
,
92
, pp.
64
85
.
5.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
6.
Alves
,
J.
,
Peixinho
,
N.
,
Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
7.
Erkaya
,
S.
,
Doğan
,
S.
, and
Ulus
,
Ş.
,
2015
, “
Effects of Joint Clearance on the Dynamics of a Partly Compliant Mechanism: Numerical and Experimental Studies
,”
Mech. Mach. Theory
,
88
, pp.
125
140
.
8.
Zhang
,
Z.
,
Xu
,
L.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2014
, “
A Kriging Model for the Dynamics of Mechanical Systems With Revolute Joint Clearances
,”
ASME J. Comput. Nonlin. Dyn.
,
9
(
3
), p.
031013
.
9.
Zhao
,
Y.
, and
Bai
,
Z.
,
2011
, “
Dynamics Analysis of Space Robot Manipulator With Joint Clearance
,”
Acta Astronaut.
,
68
, pp.
1147
1155
.
10.
Erkaya
,
S.
,
2012
, “
Investigation of Joint Clearance Effects on Welding Robot Manipulators
,”
Robot. Cim. Int. Manuf.
,
28
(
4
), pp.
449
457
.
11.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.
12.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H.
,
2012
, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints
,”
Mech. Mach. Theory
,
52
, pp.
106
129
.
13.
Flores
,
P.
,
Ambrósio
,
J.
, and
Claro
,
J. P.
,
2004
, “
Dynamic Analysis for Planar Multibody Mechanical Systems With Lubricated Joints
,”
Multibody Syst. Dyn.
,
12
(
1
), pp.
47
74
.
14.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H. M.
, and
Koshy
,
C. S.
,
2009
, “
Lubricated Revolute Joints in Rigid Multibody Systems
,”
Nonlinear Dyn.
,
56
(
3
), pp.
277
295
.
15.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
, pp.
99
114
.
16.
Daniel
,
G. B.
, and
Cavalca
,
K. L.
,
2011
, “
Analysis of the Dynamics of a Slider–Crank Mechanism With Hydrodynamic Lubrication in the Connecting Rod-Slider Joint Clearance
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1434
1452
.
17.
Reis
, V
. L.
,
Daniel
,
G. B.
, and
Cavalca
,
K. L.
,
2014
, “
Dynamic Analysis of a Lubricated Planar Slider–Crank Mechanism Considering Friction and Hertz Contact Effects
,”
Mech. Mach. Theory
,
74
, pp.
257
273
.
18.
Machado
,
M.
,
Costa
,
J.
,
Seabra
,
E.
, and
Flores
,
P.
,
2012
, “
The Effect of the Lubricated Revolute Joint Parameters and Hydrodynamic Force Models on the Dynamic Response of Planar Multibody Systems
,”
Nonlinear Dyn.
,
69
, pp.
635
654
.
19.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
,
2002
, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
,
39
(
1
), pp.
41
63
.
20.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Yang
,
J.
,
2010
, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
(
4
), pp.
489
511
.
21.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
,
2011
, “
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
,
64
, pp.
25
47
.
22.
Tian
,
Q.
,
Xiao
,
Q.
,
Sun
,
Y.
,
Hu
,
H.
,
Liu
,
H.
, and
Flores
,
P.
,
2015
, “
Coupling Dynamics of a Geared Multibody System Supported by Elastohydrodynamic Lubricated Cylindrical Joints
,”
Multibody Syst. Dyn.
,
33
(
3
), pp.
259
284
.
23.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
24.
Pandey
,
M. D.
, and
Zhang
,
X.
,
2012
, “
System Reliability Analysis of the Robotic Manipulator With Random Joint Clearances
,”
Mech. Mach. Theory
,
58
, pp.
137
152
.
25.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2013
, “
A Unified Approach to the Accuracy Analysis of Planar Parallel Manipulators Both With Input Uncertainties and Joint Clearance
,”
Mech. Mach. Theory
,
64
, pp.
1
17
.
26.
Soyguder
,
S.
,
Karakose
,
M.
, and
Alli
,
H.
,
2009
, “
Design and Simulation of Self-Tuning PID-Type Fuzzy Adaptive Control for an Expert HVAC System
,”
Expert Syst. Appl.
,
36
(
3
), pp.
4566
4573
.
27.
Meza
,
J. L.
,
Santibáñez
,
V.
,
Soto
,
R.
, and
Llama
,
M. A.
,
2012
, “
Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
59
(
6
), pp.
2709
2717
.
28.
Wu
,
J. L.
,
Luo
,
Z.
,
Zhang
,
Y. Q.
,
Zhang
,
N.
, and
Chen
,
L. P.
,
2013
, “
Interval Uncertain Method for Multibody Mechanical Systems Using Chebyshev Inclusion Functions
,”
Int. J. Numer. Methods Eng.
,
95
(
7
), pp.
608
630
.
29.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
30.
Frêne
,
J.
,
Nicolas
,
D.
, and
Degneurce
,
B.
,
1997
,
Hydrodynamic Lubrication-Bearings and Thrust Bearings
,
Elsevier
,
Amsterdam
.
31.
Daniel
,
G. B.
,
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2016
, “
Investigation on the Influence of the Cavitation Boundaries on the Dynamic Behavior of Planar Mechanical Systems With Hydrodynamic Bearings
,”
Mech. Mach. Theory
,
99
, pp.
19
36
.
32.
Berzeri
,
M.
,
Campanelli
,
M.
, and
Shabana
,
A. A.
,
2001
, “
Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation
,”
Multibody Syst. Dyn.
,
5
(
1
), pp.
21
54
.
33.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.
34.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge
.
35.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
36.
Johnson
,
M. A.
, and
Moradi
,
M. H.
,
2005
,
PID Control
,
Springer-Verlag
,
London
.
37.
Åström
,
K. T.
, and
Hägglund
,
T.
,
2001
, “
The Future of PID Control
,”
Control Eng. Pract.
,
9
(
11
), pp.
1163
1175
.
38.
Parra-Vega
,
V.
,
Arimoto
,
S.
,
Liu
,
Y.
, and
Hirzinger
,
G.
,
2003
, “
Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
967
976
.
39.
Tian
,
Q.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2007
, “
Two-Link Flexible Manipulator Modeling and Tip Trajectory Tracking Based on Absolute Nodal Coordinate Method
,”
13th National Conference on Mechanisms and Machines
, Bangalore, India, pp. 251–258.
40.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
41.
Ambrósio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
,
Springer
,
Netherlands
, pp.
57
81
.
42.
Sun
,
D. Y.
,
Chen
,
G. P.
,
Wang
,
T. C.
, and
Sun
,
R. J.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.
You do not currently have access to this content.