In industry, linear finite element (FE) models commonly serve as baseline models to represent the global structural dynamics behavior. However, available test data may show evidence of significant nonlinear characteristics. In such a case, the baseline linear model may be insufficient to represent the dynamics of the structure. The causes of the nonlinear characteristics may be local in nature and the remaining parts of the structure may be satisfactorily represented by linear descriptions. Although the baseline model can then serve as a good foundation, the physical phenomena needed to substantially increase the model's capability of representing the real structure are most likely not modeled in it. Therefore, a set of candidate parameters to control the nonlinear effects have to be added and subjected to calibration to form a credible model. An overparameterized model for calibration may results in parameter value estimates that do not survive a validation test. The parameterization is coupled to the test data and should be chosen so that the expected covariance matrix of the parameter estimates is made small. Accurate test data, suitable for calibration, is often obtained from sinusoidal testing. Because a pure monosinusoidal excitation is difficult to achieve during a physical test of a nonlinear structure, a multisinusoidal excitation is here designed. In this paper, synthetic test data from a model of a nonlinear benchmark structure are used for illustration. The steady-state solutions of the nonlinear system are found using the multiharmonic balance (MHB) method. The steady-state responses at the side frequencies are shown to contain valuable information for the calibration process that can improve the accuracy of the parameters' estimates. The model calibration made and the associated κ-fold cross-validation used is based on the Levenberg–Marquardt and the undamped Gauss–Newton algorithm, respectively. Starting seed candidates for calibration are found by the Latin hypercube sampling method. The candidate that gives the smallest deviation to test data is selected as a starting point for the iterative search for a calibration solution. The calibration result shows good agreement with the true parameter setting and the κ-fold cross validation result shows that the variances of the estimated parameters shrink when multiharmonics nonlinear frequency response functions (FRFs) are included in the data used for calibration.

References

References
1.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J. C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
502
592
.
2.
Baruch
,
M.
,
1978
, “
Optimization Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Test
,”
AIAA J.
,
16
(
11
), pp.
1208
1210
.
3.
Berman
,
A.
, and
Nagy
,
E. J.
,
1971
, “
Theory of Incomplete Models of Dynamic Structures
,”
AIAA J.
,
9
(
8
), pp.
1481
1487
.
4.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
5.
Link
,
M.
,
1999
, “
Updating of Analytical Models—Basic Procedures and Extensions
,”
Modal Analysis and Testing
,
J. M. M.
Silva
and
N. M. M.
Maia
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
281
304
.
6.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
433
447
.
7.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2001
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modelling
,
Institute of Physics Publishing
,
Bristol
.
8.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2004
, “
A Model Updating Strategy of Non-Linear Vibrating Structures
,”
Int. J. Numer. Methods Eng.
,
60
(
13
), pp.
2147
2164
.
9.
Zimmerman
,
D. C.
,
Hasselman
,
T.
, and
Anderson
,
M.
,
2005
, “
Approximation and Calibration of Nonlinear Structural Dynamics
,”
Nonlinear Dyn.
,
39
(
1
), pp.
113
128
.
10.
Böswald
,
M.
, and
Link
,
M.
,
2005
, “
Identification of Non-Linear Joint Parameters by Using Frequency Response Residuals
,”
23rd the International Modal Analysis Conference
IMAC-XXIII
, Orlando, FL, Jan. 31–Feb. 3.
11.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Non-Linear Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1593
1608
.
12.
Isasa
,
I.
,
Hot
,
A.
,
Cogan
,
S.
, and
Sadoulet-Reboul
,
E.
,
2011
, “
Model Updating of Locally Non-Linear Systems Based on Multi-Harmonic Extended Constitutive Relation Error
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2413
2425
.
13.
Josefsson
,
A.
,
Magnevall
,
M.
, and
Ahlin
,
K.
,
2006
, “
Control Algorithm for Sine Excitation on Nonlinear Systems
,”
24th International Modal Analysis Conference
IMAC-XXIV
, St. Louis, MO, Jan. 30–Feb. 2.
14.
McKay
,
M. D.
,
Beckman
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics: A J. Stat. Phys., Chem. Eng. Sci.
,
21
(
2
), pp.
239
245
.
15.
Thouverez
,
F.
,
2003
, “
Presentation of the ECL Benchmark
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
195
202
.
16.
Chen
,
Y.
,
2014
, “
Model Calibration of Nonlinear Mechanical Systems Using Multi-Harmonic Frequency Response Functions
,”
Licentiate thesis
, Linnaeus University, Växjö, Sweden.
17.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
18.
Linderholt
,
A.
, and
Abrahamsson
,
T.
,
2003
, “
Parameter Identifiability in Finite Element Model Error Localisation
,”
Mech. Syst. Signal Process.
,
17
(
3
), pp.
579
588
.
19.
Walter
,
E.
, and
Pronzato
,
L.
,
1997
,
Identification of Parametric Models from Experimental Data
,
Springer
,
London
.
20.
Spall
,
C.
,
1999
, “
The Information Matrix in Control: Computation and Some Applications
,”
38th Conference on Decision and Control
, Phoenix, AZ, Dec. 7–10.
21.
Allemang
,
R.
,
2002
, “
The Modal Assurance Criterion (MAC)—Twenty Years of Use and Abuse
,”
20th International Modal Analysis Conference
IMAC-XX
, Los Angeles, CA, Feb. 4–7.
22.
Linderholt
,
A.
, and
Abrahamsson
,
T.
,
2005
, “
Optimising the Informativeness of Test Data Used for Computational Model Updating
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
736
750
.
23.
Miller
,
A.
,
2002
,
Subset Selection in Regression
,
2nd ed.
,
Chapman and Hall/ CRC Press
,
New York
.
24.
Lundgren
,
J.
,
Ronnqvist
,
M.
, and
Varbrand
,
P.
,
2010
,
Optimization
.
Studentlitteratur
,
Malmö
.
25.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.
26.
2013
, “
MSC Nastran Version 2013, Quick Reference Guide
,” MSC Software, Santa Ana, CA.
You do not currently have access to this content.