Lyapunov–Schmidt reduction is one of the powerful and significant methods to simplify nonlinear ordinary differential systems (ODSs) with standard formulation. In this paper, we extend Lyapunov–Schmidt reduction to fractional ordinary differential systems (FODSs) with Caputo derivatives.

References

References
1.
Carr
,
J.
,
1981
,
Applications of Centre Manifold Theory
,
Springer-Verlag
,
New York
, pp.
1
36
.
2.
Khajepour
,
A.
,
Golnaraghi
,
M. F.
, and
Morris
,
K. A.
,
1997
, “
Application of Center Manifold Theory to Regulation of a Flexible Beam
,”
ASME J. Vib. Acoust.
,
119
(
2
), pp.
158
165
.
3.
Vainberg
,
M. M.
, and
Trenogin
,
V. A.
,
1962
, “
The Methods of Lyapunov and Schmidt in the Theory of Non-Linear Equations and Their Further Development
,”
Russ. Math. Surv.
,
17
(
2
), pp.
1
60
.
4.
Chicone
,
C.
,
1994
, “
Lyapunov-Schmidt Reduction and Melnikov Integrals for Bifurcation of Periodic Solutions in Coupled Oscillators
,”
J. Differ. Equations
,
112
(
2
), pp.
407
447
.
5.
Knobloch
,
J.
, and
Vanderbauwhede
,
A.
,
1996
, “
A General Reduction Method for Periodic Solutions in Conservative and Reversible Systems
,”
J. Dyn. Differ. Equations
,
8
(
1
), pp.
71
102
.
6.
Sidorov
,
N.
,
Loginov
,
B.
,
Sinitsyn
,
A.
, and
Falaleev
,
M.
,
2002
,
Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications
,
Springer
,
Amsterdam, The Netherlands
.
7.
Vanderbauwhede
,
A.
,
2009
, “
Lyapunov–Schmidt Method for Dynamical Systems
,”
Encyclopedia of Complexity and System Science
,
R. A.
Meyers
, ed.,
Springer
,
New York
.
8.
Li
,
C. P.
, and
Chen
,
G. R.
,
2001
, “
Bifurcation Analysis of the Kuramoto-Sivashinsky Equation in One Spatial Dimension
,”
Int. J. Bifurcation Chaos
,
11
(
9
), pp.
2493
2499
.
9.
Baleanu
,
D.
,
Muslih
,
S. I.
,
Rabei
,
E. M.
,
Golmankhaneh
,
A. K.
, and
Golmankhaneh
,
A. K.
,
2010
, “
On Fractional Dynamics on the Extended Phase Space
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041011
.
10.
Ma
,
L.
, and
Li
,
C. P.
,
2016
, “
Center Manifold of Fractional Dynamical System
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021010
.
11.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier Science
,
Amsterdam, The Netherlands
.
12.
Li
,
C. P.
, and
Zeng
,
F. H.
,
2015
,
Numerical Methods for Fractional Calculus
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
13.
Agrawal
,
O. P.
,
2007
, “
Fractional Variational Calculus in Terms of Riesz Fractional Derivatives
,”
J. Phys. A: Math. Theor.
,
40
(
24
), pp.
6287
6303
.
14.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2012
,
Fractional Calculus Models and Numerical Methods
,
World Scientific
,
Singapore
.
15.
Trif
,
D.
,
2005
, “
The Lyapunov-Schmidt Method for Two-Point Boundary Value Problems
,”
Fixed Point Theory
,
6
(
1
), pp.
119
132
.
16.
Golubitsky
,
M.
, and
Schaeffer
,
D. G.
,
1985
, “
Singularities and Groups in Bifurcation Theory
,”
Applied Mathematical Sciences
,
Springer-Verlag
,
New York
.
17.
Conway
,
J. B.
,
1997
,
A Course in Functional Analysis
,
Springer-Verlag
,
New York
.
18.
Qian
,
D. L.
, and
Chen
,
Y. Q.
,
2013
, “
Analysis the Fundamental Bifurcations of the Fractional Differential Systems With the Parameters
,”
J. Dyn. Control
,
11
(
3
), pp.
211
220
.
You do not currently have access to this content.