This work presents a systematic method for the dynamic modeling of flexible multiple links that are confined within a closed environment. The behavior of such a system can be completely formulated by two different mathematical models. Highly coupled differential equations are employed to model the confined multilink system when it has no impact with the surrounding walls; and algebraic equations are exploited whenever this open kinematic chain system collides with the confining surfaces. Here, to avoid using the 4 × 4 transformation matrices, which suffers from high computational complexities for deriving the governing equations of flexible multiple links, 3 × 3 rotational matrices based on the recursive Gibbs-Appell formulation has been utilized. In fact, the main aspect of this paper is the automatic approach, which is used to switch from the differential equations to the algebraic equations when this multilink chain collides with the surrounding walls. In this study, the flexible links are modeled according to the Euler–Bernoulli beam theory (EBBT) and the assumed mode method. Moreover, in deriving the motion equations, the manipulators are not limited to have only planar motions. In fact, for systematic modeling of the motion of a multiflexible-link system in 3D space, two imaginary links are added to the n real links of a manipulator in order to model the spatial rotations of the system. Finally, two case studies are simulated to demonstrate the correctness of the proposed approach.

References

References
1.
Wittenburg
,
J.
,
1977
,
Dynamics of Systems of Rigid Bodies
,
Teubner
,
Stuttgart, Germany
.
2.
Chang
,
C. C.
, and
Peng
,
S. T.
,
2007
, “
Impulsive Motion of Multibody Systems
,”
Multibody Syst. Dyn.
,
17
(
1
), pp.
47
70
.
3.
Hurmuzlu
,
Y.
, and
Marghitu
,
D. B.
,
1994
, “
Rigid Body Collision of Planar Kinematic Chain With Multiple Contact Points
,”
Int. J. Rob. Res.
,
13
(
1
), pp.
82
92
.
4.
Goswami
,
A.
,
Thuilot
,
B.
, and
Espiau
,
B.
,
1998
, “
A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos
,”
Int. J. Rob. Res.
,
17
(
12
), pp.
1282
1301
.
5.
Chevallereau
,
C.
,
Westervelt
,
E. R.
, and
Grizzle
,
J. W.
,
2005
, “
Asymptotically Stable Running for a Five-Link, Four-Actuator, Planar Bipedal Robot
,”
Int. J. Rob. Res.
,
24
(6), pp.
431
464
.
6.
Tlalolini
,
D.
,
Aoustin
,
Y.
, and
Chevallereau
,
C.
,
2010
, “
Design of a Walking Cyclic Gait With Single Support Phases and Impacts for the Locomotor System of a Thirteen-Link 3D Biped Using the Parametric Optimization
,”
Multibody Syst. Dyn.
,
23
(
1
), pp.
33
56
.
7.
Tornambè
,
A.
,
1999
, “
Modeling and Control of Impact in Mechanical Systems: Theory and Experimental Results
,”
IEEE Trans. Autom. Control
,
44
(
2
), pp.
294
309
.
8.
Liu
,
S.
,
Wu
,
L.
, and
Lu
,
Z.
,
2007
, “
Impact Dynamic and Control of a Flexible Dual-Arm Space Robot Capturing an Object
,”
Appl. Math. Comput.
,
185
(
2
), pp.
1149
1159
.
9.
Khude
,
N.
,
Stanciulescu
,
I.
,
Melanz
,
D.
, and
Negrut
,
D.
,
2013
, “
Efficient Parallel Simulation of Large Flexible Body Systems With Multiple Contacts
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(4), p. 041003.
10.
Kövecses
,
J.
, and
Cleghorn
,
W.
,
2003
, “
Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain's Principle: Discrete and Hybrid Parameter Models
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
935
956
.
11.
Heppler
,
G. R.
, and
Kariz
,
Z.
,
2000
, “
A Controller for an Impacted Single Flexible Link
,”
J. Vib. Control
,
6
(3), pp.
407
428
.
12.
Boghiu
,
D.
, and
Marghitu
,
D. B.
,
1998
, “
The Control of an Impacting Flexible Link Using Fuzzy Logic Strategy
,”
J. Vib. Control
,
4
(
3
), pp.
325
341
.
13.
Seidi
,
M.
,
Hajiaghamemar
,
M.
, and
Caccese
,
V.
,
2015
, “
Evaluation of Effective Mass During Head Impact Due to Standing Falls
,”
Int. J. Crashworthiness
,
20
(
2
), pp.
134
141
.
14.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
,
1987
, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
,
22
(
3
), pp.
213
224
.
15.
Yigit
,
A. S.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1990
, “
Dynamics of a Radially Rotating Beam With Impact, Part 1: Theoretical and Computational Model
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
65
70
.
16.
Yigit
,
A. S.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1990
, “
Dynamics of a Radially Rotating Beam With Impact, Part 2: Experimental and Simulation Results
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
71
77
.
17.
Yigit
,
A. S.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1990
, “
Spring-Dashpot Models for the Dynamics of a Radially Rotating Beam With Impact
,”
J. Sound Vib.
,
142
(
3
), pp.
515
525
.
18.
Yigit
,
A. S.
,
1994
, “
Impact Response of a Two-Link Rigid-Flexible Manipulators
,”
J. Sound Vib.
,
177
(
3
), pp.
349
361
.
19.
Chapnik
,
B. V.
,
Heppler
,
G. R.
, and
Aplevich
,
J. D.
,
1991
, “
Modeling Impact on a One-Link Flexible Robotic Arm
,”
IEEE Trans. Rob. Autom.
,
7
(
4
), pp.
479
488
.
20.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp.
189
222
.
21.
Khulief
,
Y. A.
,
2012
, “
Modeling of Impacts in Multibody Systems: An Overview
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(2), p. 021012.
22.
Krauss
,
R.
,
2012
, “
Computationally Efficient Modeling of Flexible Robots Using the Transfer Matrix Method
,”
J. Vib. Control
,
18
(
5
), pp.
596
608
.
23.
Mohan
,
A.
, and
Saha
,
S. K.
,
2009
, “
A Recursive, Numerically Stable, and Efficient Simulation Algorithm for Serial Robots With Flexible Links
,”
Multibody Syst. Dyn.
,
21
(
1
), pp.
1
35
.
24.
Tong
,
M. M.
,
2010
, “
A Recursive Algorithm for Solving the Generalized Velocities From the Momenta of Flexible Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(4), p. 041002.
25.
Changizi
,
K.
, and
Shabana
,
A. A.
,
1988
, “
Recursive Formulation for Flexible Multibody Systems
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
687
693
.
26.
Shabana
,
A. A.
,
Hwang
,
Y. L.
, and
Wehage
,
R. A.
,
1992
, “
Projection Methods in Flexible Multibody Dynamics. Part I: Kinematics, Part II: Dynamic and Recursive Projection Methods
,”
Int. J. Numer. Methods Eng.
,
35
(10), pp.
1941
1966
.
27.
Lugris
,
U.
,
Naya
,
M. A.
,
Gonzalez
,
F.
, and
Cuadrado
,
J.
,
2007
, “
Performance and Application Criteria of Two Fast Formulations for Flexible Multibody Dynamics
,”
Mech. Based Des. Struct. Mach.
,
35
(
4
), pp.
381
404
.
28.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
ASME Appl. Mech. Rev.
,
56
(6), pp.
553
613
.
29.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2013
, “
Application of Recursive Gibbs–Appell Formulation in Deriving the Equations of Motion of N-Viscoelastic Robotic Manipulators in 3D Space Using Timoshenko Beam Theory
,”
Acta Astronaut.
,
83
, pp.
273
294
.
30.
Korayem
,
M. H.
, and
Shafei
,
A. M.
,
2015
, “
A New Approach for Dynamic Modeling of n-Viscoelastic-Link Robotic Manipulators Mounted on a Mobile Base
,”
Nonlinear Dyn.
,
79
(
4
), pp.
2767
2786
.
31.
Korayem
,
M. H.
,
Shafei
,
A. M.
, and
Dehkordi
,
S. F.
,
2014
, “
Systematic Modeling of a Chain of N-Flexible Link Manipulators Connected by Revolute–Prismatic Joints Using Recursive Gibbs–Appell Formulation
,”
Arch. Appl. Mech.
,
84
(
2
), pp.
187
206
.
You do not currently have access to this content.