In this paper, a new method is presented for solving generalized nonlinear singular Lane–Emden type equations arising in the field of astrophysics, by introducing Bernoulli wavelet operational matrix of derivative (BWOMD). Bernoulli wavelet expansions together with this operational matrix method, by taking suitable collocation points, converts the given Lane–Emden type equations into a system of algebraic equations. Solution to the problem is identified by solving this system of equations. Further applicability and simplicity of the proposed method has been demonstrated by some examples and comparison with other recent methods. The obtained results guarantee that the proposed BWOMD method provides the good approximate solution to the generalized nonlinear singular Lane–Emden type equations.

References

References
1.
Lane
,
J. H.
,
1870
, “
On Theoretical Temperature of the Sun Under the Hypothesis of a Gaseous Mass Maintaining Its Internal Heat and Depending on the Laws of Gases Known to Terrestrial Experiment
,”
Am. J. Sci. Arts Ser.
,
2
(
50
), pp.
57
74
.
2.
Chandrasekhar
,
S.
,
1967
,
Introduction to Study of Stellar Structure
,
Dover
,
New York
.
3.
Shawagfeh
,
N. T.
,
1993
, “
Nonperturbative Approximate Solution for Lane–Emden Equation
,”
J. Math. Phys.
,
34
(
9
), pp.
4364
4369
.
4.
Davis
,
H. T.
,
1962
,
Introduction to Nonlinear Differential and Integral Equations
,
Dover
,
New York
.
5.
Rosenau
,
P.
,
1984
, “
A Note on Integration of the Emden–Fowler Equation
,”
Int. J. NonLinear Mech.
,
19
(
4
), pp.
303
308
.
6.
Richardson
,
O. U.
,
1921
,
Emission of Electricity From Hot Bodies
,
Longman's Green Company
,
London
.
7.
Horedt
,
G. P.
,
1986
, “
Seven-Digit Tables of Lane–Emden Functions
,”
Astrophys. Space Sci.
,
126
(
2
), pp.
357
408
.
8.
Bender
,
C. M.
,
Milton
,
K. A.
,
Pinsky
,
S. S.
, and
Simmons
,
L. M.
, Jr.
,
1989
, “
A New Perturbative Approach to Nonlinear Problems
,”
J. Math. Phys.
,
30
(
7
), pp.
1447
1455
.
9.
Shawagfeh
,
N. T.
,
1993
, “
Nonperturbative Approximate Solution for Lane–Emden Equation
,”
J. Math. Phys.
,
34
(
9
), pp.
4364
4369
.
10.
Wazwaz
,
A.
,
2001
, “
A New Algorithm for Solving Differential Equations of Lane–Emden Type
,”
Appl. Math. Comput.
,
118
(
2–3
), pp.
287
310
.
11.
Liao
,
S.
,
2003
, “
A New Analytic Algorithm of Lane–Emden Type Equations
,”
Appl. Math. Comput.
,
142
(
1
), pp.
1
16
.
12.
Chowdhury
,
M. S. H.
, and
Hashim
,
I.
,
2009
, “
Solutions of Emden–Fowler Equations by Homotopy Perturbation Method
,”
Nonlinear Anal. Real World Appl.
,
10
(
1
), pp.
104
115
.
13.
Yildirim
,
A.
, and
Özis
,
T.
,
2009
, “
Solutions of Singular IVPs of Lane–Emden Type by the Variational Iteration Method
,”
Nonlinear Anal. Ser. A Theor. Methods Appl.
,
70
(
6
), pp.
2480
2484
.
14.
Ramos
,
J. I.
,
2008
, “
Series Approach to the Lane–Emden Equation and Comparison With the Homotopy Perturbation Method
,”
Chaos Solitons Fractals
,
38
(
2
), pp.
400
408
.
15.
Van Gorder
,
R. A.
, and
Vajravelu
,
K.
,
2008
, “
Analytic and Numerical Solutions to the Lane–Emden Equation
,”
Phys. Lett. A
,
372
(
39
), pp.
6060
6065
.
16.
Dehghan
,
M.
, and
Shakeri
,
F.
,
2008
, “
Approximate Solution of Differential Equation Arising in Astrophysics Using the Variation Method
,”
New Astron.
,
13
(
1
), pp.
53
59
.
17.
Parand
,
K.
,
Shahini
,
M.
, and
Dehghan
,
M.
,
2009
, “
Rational Legendre Pseudo-Spectral Approach for Solving Nonlinear Differential Equations of Lane–Emden Type
,”
J. Comput. Phys.
,
228
(
23
), pp.
8830
8840
.
18.
Parand
,
K.
,
Dehghan
,
M.
,
Rezaeia
,
A. R.
, and
Ghaderi
,
S. M.
,
2010
, “
An Approximation Algorithm for the Solution of the Nonlinear Lane–Emden Type Equations Arising in Astrophysics Using Hermite Functions Collocation Method
,”
Comput. Phys. Commun.
,
181
(
6
), pp.
1096
1108
.
19.
Mukherjee
,
S.
,
Roy
,
B.
, and
Chaterjee
,
P. K.
,
2011
, “
Solution of Lane–Emden Equation by Differential Transform Method
,”
Int. J. Nonlinear Sci.
,
12
, pp.
478
484
.
20.
Kumar
,
N.
,
Pandey
,
R. K.
, and
Cattani
,
C.
,
2011
, “
Solution of the Lane–Emden Equation Using the Bernstein Operational Matrix of Integration
,”
ISRN Astron. Astrophys.
,
2011
(
9
), p.
351747
.
21.
Pandey
,
R. K.
, and
Kumar
,
N.
,
2012
, “
Solution of Lane–Emden Type Equations Using Bernstein Operational Matrix of Differentiation
,”
New Astron.
,
17
(
3
), pp.
303
308
.
22.
Iqbal
,
S.
, and
Javed
,
A.
,
2011
, “
Application of Optimal Homotopy Asymptotic Method for the Analytic Solution of Singular Lane–Emden Type Equation
,”
Appl. Math. Comput.
,
217
(
19
), pp.
7753
7761
.
23.
Lakestani
,
M.
, and
Dehghan
,
M.
,
2013
, “
Four Techniques Based on the B-Spline Expansion and the Collocation Approach for the Numerical Solution of the Lane–Emden Equation
,”
Math. Methods Appl. Sci.
,
36
(16), pp.
2243
2253
.
24.
Boubaker
,
K.
, and
Van Gorder
,
R. A.
,
2012
, “
Application of the BPES to Lane–Emden Equations Governing Polytropic and Isothermal Gas Spheres
,”
New Astron.
,
17
(
6
), pp.
565
569
.
25.
Rismani
,
A. M.
, and
Monfared
,
H.
,
2012
, “
Numerical Solution of Singular IVPs of Lane–Emden Type Using a Modified Legendre-Spectral Method
,”
Appl. Math. Modell.
,
36
(
10
), pp.
4830
4836
.
26.
Pandey
,
R. K.
,
Kumar
,
N.
,
Bhardwaj
,
A.
, and
Dutta
,
G.
,
2012
, “
Solution of Lane–Emden Type Equations Using Legendre Operational Matrix of Differentiation
,”
Appl. Math. Comput.
,
218
(
14
), pp.
7629
7637
.
27.
Căruntu
,
B.
, and
Bota
,
C.
,
2013
, “
Approximate Polynomial Solutions of the Nonlinear Lane–Emden Type Equations Arising in Astrophysics Using the Squared Remainder Minimization Method
,”
Comput. Phys. Commun.
,
184
(
7
), pp.
1643
1648
.
28.
Öztürk
,
Y.
, and
Gülsu
,
M.
,
2014
, “
An Approximation Algorithm for the Solution of the Lane–Emden Type Equations Arising in Astrophysics and Engineering Using Hermite Polynomials
,”
Comput. Appl. Math.
,
33
(
1
), pp.
131
145
.
29.
Nasab
,
A. K.
,
Kılıçman
,
A.
,
Atabakan
,
Z. P.
, and
Leong
,
W. J.
,
2015
, “
A Numerical Approach for Solving Singular Nonlinear Lane–Emden Type Equations Arising in Astrophysics
,”
New Astron.
,
34
, pp.
178
186
.
30.
Yang
,
C.
, and
Hou
,
J.
,
2012
, “
A Numerical Method for Lane–Emden Equations Using Hybrid Functions and the Collocation Method
,”
ASME J. Appl. Math.
,
2012
(
2012
), p.
316534
.
31.
Beylkin
,
G.
,
Coifman
,
R.
, and
Rokhlin
,
V.
,
1991
, “
Fast Wavelet Transforms and Numerical Algorithms
,”
Commun. Pure Appl. Math.
,
44
(2), pp.
141
183
.
32.
Chen
,
C. F.
, and
Hsiao
,
C. H.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems
,”
IEEE Proc. Control Theory Appl.
,
144
(
1
), pp.
87
94
.
33.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2000
, “
Legendre Wavelets Direct Method for Variational Problems
,”
Math. Comput. Simul.
,
53
(
3
), pp.
185
192
.
34.
Balaji
,
S.
,
2014
, “
Solution of Nonlinear Riccati Differential Equation Using Chebyshev Wavelets
,”
WSEAS Trans. Math.
,
13
, pp.
441
451
.
35.
Balaji
,
S.
,
2014
, “
A New Approach for the Solution of Duffing Equation Involving Both Integral and Non-Integral Forcing Terms
,”
Ain Shams Eng. J.
,
5
(
3
), pp.
985
990
.
36.
Balaji
,
S.
,
2014
, “
Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation
,”
Int. J. Math. Math. Sci.
,
2014
(
2014
), p.
304745
.
37.
Kaur
,
H.
,
Mittal
,
R. C.
, and
Mishra
,
V.
,
2013
, “
Haar Wavelet Approximate Solutions for the Generalized Lane–Emden Equations Arising in Astrophysics
,”
Comput. Phys. Commun.
,
184
(
9
), pp.
2169
2177
.
38.
Yousefi
,
S. A.
,
2006
, “
Legendre Wavelets Method for Solving Differential Equations of Lane–Emden Type
,”
Appl. Math. Comput.
,
181
(
2
), pp.
1417
1422
.
39.
Keshavarz
,
E.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2014
, “
Bernoulli Wavelet Operational Matrix of Fractional Order Integration and Its Applications in Solving the Fractional Order Differential Equations
,”
Appl. Math. Modell.
,
38
(
24
), pp.
6038
6051
.
You do not currently have access to this content.