This paper investigates the control and synchronization of a class of chaotic systems with external disturbance. The chaotic systems are assumed that only the output state variable is available. By using the output state variable, two types synchronization schemes, i.e., the chaos-based synchronization and the observer-based synchronization schemes, are discussed. Some novel criteria for the control and synchronization of a class of chaotic systems with external disturbance are proposed. The unified chaotic system is taken as an example to demonstrate the efficiency of the proposed approach.

References

References
1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
, pp.
821
824
.
2.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
3.
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2008
, “
On Control and Synchronization in Chaotic and Hyperchaotic Systems Via Linear Feedback Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
7
), pp.
1246
1255
.
4.
Wen
,
C.
,
Zhou
,
J.
,
Liu
,
Z.
, and
Su
,
H.
,
2011
, “
Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance
,”
IEEE Trans. Autom. Control
,
56
(
7
), pp.
1672
1678
.
5.
Srivastava
,
M.
,
Ansari
,
S. P.
,
Agrawal
,
S. K.
,
Das
,
S.
, and
Leung
,
A. Y. T.
,
2014
, “
Anti-Synchronization Between Identical and Non-Identical Fractional-Order Chaotic Systems Using Active Control Method
,”
Nonlinear Dyn.
,
76
(
2
), pp.
905
914
.
6.
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2004
, “
On an Optimal Control Design for Röossler System
,”
Phys. Lett. A
,
333
, pp.
241
245
.
7.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2013
, “
Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(3), p.
031006
.
8.
Grzybowski
,
J. M. V.
,
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2009
, “
Synchronization of the Unified Chaotic System and Application in Secure Communication
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
6
), pp.
2793
2806
.
9.
Vincent
,
U. E.
,
2008
, “
Synchronization of Identical and Nonidentical 4-D Chaotic Systems Using Active Control
,”
Chaos Solitons Fractals
,
37
(
4
), pp.
1065
1075
.
10.
Luo
,
R. Z.
, and
Zeng
,
Y. H.
,
2015
, “
The Control and Synchronization of a Rotational Relativistic Chaotic System With Parameter Uncertainties and External Disturbance
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064503
.
11.
Song
,
Q. K.
, and
Huang
,
T. W.
,
2015
, “
Stabilization and Synchronization of Chaotic Systems With Mixed Time-Varying Delays Via Intermittent Control With Non-Fixed Both Control Period and Control Width
,”
Neurocomputing
,
154
, pp.
61
69
.
12.
Sadaoui
,
D.
,
Boukabou
,
A.
, and
Hadef
,
S.
,
2014
, “
Predictive Feedback Control and Synchronization of Hyperchaotic Systems
,”
Appl. Math. Comput.
,
247
, pp.
235
243
.
13.
Luo
,
R. Z.
, and
Zhang
,
C. H.
,
2015
, “
The Observer of a Class of Chaotic Systems: An Application to HR Neuronal Model
,”
Chin. Phys. B
,
24
(
3
), p.
030503
.
14.
Luo
,
R. Z.
, and
Zeng
,
Y. H.
,
2015
, “
The Control and Synchronization of a Rotational Relativistic Chaotic System Via States Recovery
,”
Chin. J. Phys.
,
53
, p.
040704
.
15.
Luo
,
R. Z.
, and
Zeng
,
Y. H.
,
2015
, “
The Control and Synchronization of a Class of Chaotic System Via States Recovery
,”
Chin. J. Phys.
,
53
, p.
060704
.
16.
Luo
,
R. Z.
, and
He
,
L. M.
,
2014
, “
PC Synchronization of a Class of Chaotic Systems Via Event-Triggered Control
,”
Chin. Phys. B
,
23
(
7
), p.
070506
.
17.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
18.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
(07), pp.
1465
1466
.
19.
,
J. H.
,
Chen
,
G. R.
,
Cheng
,
D. Z.
, and
Celikovsky
,
S.
,
2002
, “
Bridge the Gap Between the Lorenz System and the Chen System
,”
Int. J. Bifurcation Chaos
,
12
(
12
), pp.
2917
2926
.
20.
Luo
,
R. Z.
, and
He
,
L. M.
,
2014
, “
The Control and Modified Projective Synchronization of a Class of 2,3,4-Dimensional (Chaotic) Systems With Parameter and Model Uncertainties and External Disturbances Via Adaptive Control
,”
Chin. J. Phys.
,
52
, pp.
830
851
.
21.
Park
,
K. B.
, and
Tsuji
,
T.
,
1999
, “
Terminal Sliding Mode Control of Second-Order Nonlinear Uncertain Systems
,”
Int. J. Robust Nonlinear Control
,
9
(
11
), pp.
769
780
.
You do not currently have access to this content.