Regenerative machine tool chatter is investigated for a single-degree-of-freedom model of turning processes. The cutting force is modeled as the resultant of a force system distributed along the rake face of the tool, whose magnitude is a nonlinear function of the chip thickness. Thus, the process is described by a nonlinear delay-differential equation, where a short distributed delay is superimposed on the regenerative point delay. The corresponding stability lobe diagrams are computed and are shown numerically that a subcritical Hopf bifurcation occurs along the stability boundaries for realistic cutting-force distributions. Therefore, a bistable region exists near the stability boundaries, where large-amplitude vibrations (chatter) may arise for large perturbations. Analytical formulas are obtained to estimate the size of the bistable region based on center manifold reduction and normal form calculations for the governing distributed-delay equation. The locally and globally stable parameter regions are computed numerically as well using the continuation algorithm implemented in dde-biftool. The results can be considered as an extension of the bifurcation analysis of machining operations with point delay.

References

References
1.
Tobias
,
S. A.
, and
Fishwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
, pp.
199
203
; 238–239.
2.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of the Machine Tool Against Self-Excited Vibration in Machining
,”
ASME Production Engineering Research Conference
, pp.
454
465
.
3.
Clancy
,
B. E.
, and
Shin
,
Y. C.
,
2002
, “
A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1035
1044
.
4.
Ahmadi
,
K.
, and
Ismail
,
F.
,
2010
, “
Experimental Investigation of Process Damping Nonlinearity in Machining Chatter
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
1006
1014
.
5.
Shi
,
Y.
,
Mahr
,
F.
,
von Wagner
,
U.
, and
Uhlmann
,
E.
,
2012
, “
Chatter Frequencies of Micromilling Processes: Influencing Factors and Online Detection Via Piezoactuators
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
10
16
.
6.
Altintas
,
Y.
,
2012
,
Manufacturing Automation—Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design
,
2nd ed.
,
Cambridge University Press
,
Cambridge, MA
.
7.
Stépán
,
G.
,
1997
, “
Delay-Differential Equation Models for Machine Tool Chatter
,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
, pp.
165
192
.
8.
Molnár
,
T. G.
, and
Insperger
,
T.
,
2015
, “
On the Effect of Distributed Regenerative Delay on the Stability Lobe Diagrams of Milling Processes
,”
Period. Polytech., Mech. Eng.
,
59
(
3
), pp.
126
136
.
9.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Roose
,
D.
,
2002
, “
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL
,”
ACM Trans. Math. Software
,
28
(
1
), pp.
1
21
.
10.
Sieber
,
J.
,
Engelborghs
,
K.
,
Luzyanina
,
T.
,
Samaey
,
G.
, and
Roose
,
D.
,
2014
, “
DDE-BIFTOOL v. 3.0 Manual—Bifurcation Analysis of Delay Differential Equations
,” http://arxiv.org/abs/1406.7144.
11.
Barrow
,
G.
,
Graham
,
W.
,
Kurimoto
,
T.
, and
Leong
,
Y. F.
,
1982
, “
Determination of Rake Face Stress Distribution in Orthogonal Machining
,”
Int. J. Mach. Tool Des. Res.
,
22
(
1
), pp.
75
85
.
12.
Buryta
,
D.
,
Sowerby
,
R.
, and
Yellowley
,
I.
,
1994
, “
Stress Distributions on the Rake Face During Orthogonal Machining
,”
Int. J. Mach. Tools Manuf.
,
34
(
5
), pp.
721
739
.
13.
Bagchi
,
A.
, and
Wright
,
P. K.
,
1987
, “
Stress Analysis in Machining With the Use of Sapphire Tools
,”
Proc. R. Soc. London, Ser. A
,
409
(
1836
), pp.
99
113
.
14.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
,
ASME
,
New York
.
15.
Shi
,
H. M.
, and
Tobias
,
S. A.
,
1984
, “
Theory of Finite Amplitude Machine Tool Instability
,”
Int. J. Mach. Tool Des. Res.
,
24
(
1
), pp.
45
69
.
16.
Stépán
,
G.
,
Dombóvári
,
Z.
, and
Muñoa
,
J.
,
2011
, “
Identification of Cutting Force Characteristics Based on Chatter Experiments
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
113
116
.
17.
Yang
,
X.
, and
Liu
,
C. R.
,
2002
, “
A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method
,”
Int. J. Mech. Sci.
,
44
(
4
), pp.
703
723
.
18.
Astakhov
, V
. P.
, and
Outeiro
,
J. C.
,
2005
, “
Modeling of the Contact Stress Distribution at the Tool–Chip Interface
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
85
99
.
19.
Kilic
,
D. S.
, and
Raman
,
S.
,
2007
, “
Observations of the Tool–Chip Boundary Conditions in Turning of Aluminum Alloys
,”
Wear
,
262
(
7–8
), pp.
889
904
.
20.
Kato
,
S.
,
Yamaguchi
,
K.
, and
Yamada
,
M.
,
1972
, “
Stress Distribution at the Interface Between Tool and Chip in Machining
,”
ASME J. Eng. Ind.
,
94
(
2
), pp.
683
689
.
21.
Childs
,
T. H. C.
, and
Mahdi
,
M. I.
,
1989
, “
On the Stress Distribution Between the Chip and Tool During Metal Turning
,”
CIRP Ann. Manuf. Technol.
,
38
(
1
), pp.
55
58
.
22.
Chandrasekaran
,
H.
, and
Kapoor
,
D. V.
,
1965
, “
Photoelastic Analysis of Chip–Tool Interface Stresses
,”
ASME J. Eng. Ind.
,
87
(
4
), pp.
495
502
.
23.
Woon
,
K. S.
,
Rahman
,
M.
,
Neo
,
K. S.
, and
Liu
,
K.
,
2008
, “
The Effect of Tool Edge Radius on the Contact Phenomenon of Tool-Based Micromachining
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1395
1407
.
24.
Dombóvári
,
Z.
,
Wilson
,
R. E.
, and
Stépán
,
G.
,
2008
, “
Estimates of the Bistable Region in Metal Cutting
,”
Proc. R. Soc. A
,
464
(
2100
), pp.
3255
3271
.
25.
Hassard
,
B. D.
,
Kazarinoff
,
N. D.
, and
Wan
,
Y.-H.
,
1981
,
Theory and Applications of Hopf Bifurcation
(London Mathematical Society Lecture Note Series), Vol.
41
,
Cambridge University Press
,
Cambridge, UK
.
26.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1983
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Springer
,
New York
.
27.
Hale
,
J.
,
1977
,
Theory of Functional Differential Equations
,
Springer
,
New York
.
28.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
,
1997
, “
Nonlinear Regenerative Machine Tool Vibrations
,”
Proceedings of DETC'97, ASME Design and Technical Conferences
, pp.
1
11
.
29.
Stépán
,
G.
,
1989
,
Retarded Dynamical Systems
,
Longman
,
Harlow, UK
.
30.
Dombóvári
,
Z.
,
Barton
,
D. A.
,
Wilson
,
R. E.
, and
Stépán
,
G.
,
2011
, “
On the Global Dynamics of Chatter in the Orthogonal Cutting Model
,”
Int. J. Nonlinear Mech.
,
46
(
1
), pp.
330
338
.
31.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems—Stability and Engineering Applications
,
Springer
,
New York
.
You do not currently have access to this content.